CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Effect of pressure on electronic and thermoelectric properties of magnesium silicide: A density functional theory study |
Kulwinder Kaur, Ranjan Kumar |
Department of Physics, Panjab University, Chandigarh-160014, India |
|
|
Abstract We study the effect of pressure on electronic and thermoelectric properties of Mg2}Si using the density functional theory and Boltzmann transport equations. The variation of lattice constant, band gap, bulk modulus with pressure is also analyzed. Further, the thermoelectric properties (Seebeck coefficient, electrical conductivity, electronic thermal conductivity) have been studied as a function of temperature and pressure up to 1200 K. The results show that Mg2Si is an n-type semiconductor with a band gap of 0.21 eV. The negative value of the Seebeck coefficient at all pressures indicates that the conduction is due to electrons. With the increase in pressure, the Seebeck coefficient decreases and electrical conductivity increases. It is also seen that, there is practically no effect of pressure on the electronic contribution of thermal conductivity. The paper describes the calculation of the lattice thermal conductivity and figure of merit of Mg2}Si at zero pressure. The maximum value of figure of merit is attained 1.83×10-3 at 1000 K. The obtained results are in good agreement with the available experimental and theoretical results.
|
Received: 21 December 2015
Revised: 15 January 2016
Accepted manuscript online:
|
PACS:
|
64.70.kg
|
(Semiconductors)
|
|
74.62.Fj
|
(Effects of pressure)
|
|
74.25.fc
|
(Electric and thermal conductivity)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Project supported by the Council of Scientific & Industrial Research (CSIR), India. |
Corresponding Authors:
Kulwinder Kaur
E-mail: kulwinderphysics@gmail.com
|
Cite this article:
Kulwinder Kaur, Ranjan Kumar Effect of pressure on electronic and thermoelectric properties of magnesium silicide: A density functional theory study 2016 Chin. Phys. B 25 056401
|
[1] |
Wood C 1988 Rep. Prog. Phys. 51 459
|
[2] |
Liu Z, Watanabe M and Hanabusa M 2001 Thin Solid Films 381 262
|
[3] |
Borisenko V E 2000 Semiconducting Silicides (Springer-Verlag) p. 285
|
[4] |
Morris R G, Redin R D and Danielson G C 1958 Phys. Rev. 109 1909
|
[5] |
Akasaka M, Iida T, Matsumoto A, Yamanaka K, Takanashi Y, Imai T and Hamada N 2008 J. Appl. Phys. 104 013703
|
[6] |
Yu Z, Xie Q, Xiao Q and Zhao K 2009 Acta Phys. Sin. 58 6889 (in Chinese)
|
[7] |
Li C, Wu Y, Li H and Liu X 2009 J. Alloys Compd. 477 212
|
[8] |
Wang X N, Wang Y, Zou J, Zhang T C, Mei Z X, Guo Y and Zhang Z 2009 Chin. Phys. B 18 3079
|
[9] |
Bashenov V K, Mutal A M and Timofeenko V V 1978 Phys. Status Solidi B 87 77
|
[10] |
Aizawa T and Song R 2006 Intermetallics 14 382
|
[11] |
DiSalvo F J 1999 Science 285 703
|
[12] |
Snyder G J and Ursell T S 2003 Phys. Rev. Lett. 91 148301
|
[13] |
Baranek P, Schamps J and Noiret I 1997 J. Phys. Chem. B 101 9147
|
[14] |
Baranek P and Schamps J 1999 J. Phys. Chem. B 103 2601
|
[15] |
Tani J I and Kido H 2008 Comput. Mater. Sci. 42 531
|
[16] |
Zaitsev V K, Fedorov M I, Gurieva E A, Eremin I S, Konstantinov P P, Samunin A Y and Vedernikov M V 2006 Phys. Rev. B 74 045207
|
[17] |
Isoda Y, Tada S, Nagai T, Fujiu H and Shinohara Y 2010 Mater. Trans. 51 868
|
[18] |
Jung J Y and Kim I H 2010 Electron. Mater. Lett. 6 187
|
[19] |
Kim K H, Choi S M and Seo W S 2010 J. Korean Phy. Soc. 57 1072
|
[20] |
Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
|
[21] |
Yu B, Chen D, Tang Q, Wang C and Shi D 2010 J. Phys. Chem. Solids 71 758
|
[22] |
Yu F, Sun J X, Yang W, Tian R G and Ji G F 2010 Solid State Commun. 150 620
|
[23] |
Hao J, Zou B, Zhu P, Gao C, Li Y, Liu D and Zou G 2009 Solid State Commun. 149 689
|
[24] |
Hao J 2008 Studies on the Characteristics and Structure Transformation of Magnesium Silicide under High Pressure (Jilin University)
|
[25] |
Murtaza G, Sajid A, Rizwan M, Takagiwa Y, Khachai H, Jibran M and Omran S B 2015 Mat. Sci. Semiconduct. Process. 40 429
|
[26] |
Ziman J M 2001 Electrons and Phonons Oxford Classics Series (Oxford: Clarendon Press)
|
[27] |
Kulwinder K and Ranjan K 2016 Chin. Phys. B 25 26402
|
[28] |
Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A D, Gironcoli S de, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Conden. Matter 21 395502
|
[29] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3864
|
[30] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[31] |
Madsen G K and Singh D J 2006 Comput. Phys. Commun. 175 67
|
[32] |
Scheidemantel T J, Ambrosch-Draxl C, Thonhauser T, Badding J V and Sofo J O 2003 Phys. Rev. B 68 125210
|
[33] |
Jodin L, Tobola J, Pecheur P, Scherrer H and Kaprzyk S 2004 Phys. Rev. B 70 184207
|
[34] |
Ong K P, Singh D J and Wu P 2011 Phys. Rev. B 83 115110
|
[35] |
Zou D F, Xie S H, Liu Y Y, Lin J G and Li J Y 2013 J. Appl. Phys. 113 193705
|
[36] |
Tani J I and Kido H 2007 Intermetallics 15 120237
|
[37] |
Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747
|
[38] |
Ma J, Li W and Luo X 2014 Appl. Phys. Lett. 105 082103
|
[39] |
Carrete J, Mingo N and Curtarolo S 2014 Appl. Phys. Lett. 105 101907
|
[40] |
Munrnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
|
[41] |
Pandit P and Sanyal S P 2011 Indian Journal of Pure and Applied Physics 49 692
|
[42] |
Fan W, Chen R, Wang L, Han P and Meng Q 2011 J. Electron. Mater. 40 1209
|
[43] |
Boulet P, Verstraete M J, Crocombette J P, Briki M and Record M C 2011 Comput. Mater. Sci. 50 847
|
[44] |
Gunnarsson O and Schönhammer K 1986 Phys. Rev. Lett. 56 1968
|
[45] |
Poopanya P and Yangthaisong A 2013 Physics of Semiconductors: Proceedings of the 31st International Conference on the Physics of Semiconductors 2012 p. 415 (AIP Publishing)
|
[46] |
You S W and Kim I H 2011 Curr. Appl. Phys. 11 392
|
[47] |
Corkill J L and Cohen M L 1993 Phys. Rev. B 48 17138
|
[48] |
Kalarasse F and Bennecer B 2008 J. Phys. Chem. Solids 69 1775
|
[49] |
Clark C R, Wright C, Suryanarayana C, Baburaj E G and Froes F H 1997 Mat. Lett. 33 71
|
[50] |
Fu G, Zuo L, Longtin J, Nie C and Gambino R 2013 J. Appl. Phys. 114 144905
|
[51] |
Tani J I and Kido H 2007 Intermetallics 15 1202
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|