Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 054701    DOI: 10.1088/1674-1056/25/5/054701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Flow control of micro-ramps on supersonic forward-facing step flow

Qing-Hu Zhang(张庆虎)1, Tao Zhu(朱涛)1, Shihe Yi(易仕和)2, Anping Wu(吴岸平)1
1. Hypervelocity Aerodynamics Institute of China Aerodynamics Research and Development Center, Mianyang 621000, China;
2. College of Aerospace Science and Technology, National University of Defense Technology, Changsha 410073, China
Abstract  The effects of the micro-ramps on supersonic turbulent flow over a forward-facing step (FFS) was experimentally investigated in a supersonic low-noise wind tunnel at Mach number 3 using nano-tracer planar laser scattering (NPLS) and particle image velocimetry (PIV) techniques. High spatiotemporal resolution images and velocity fields of supersonic flow over the testing model were captured. The fine structures and their spatial evolutionary characteristics without and with the micro-ramps were revealed and compared. The large-scale structures generated by the micro-ramps can survive the downstream FFS flowfield. The micro-ramps control on the flow separation and the separation shock unsteadiness was investigated by PIV results. With the micro-ramps, the reduction in the range of the reversal flow zone in streamwise direction is 50% and the turbulence intensity is also reduced. Moreover, the reduction in the average separated region and in separation shock unsteadiness are 47% and 26%, respectively. The results indicate that the micro-ramps are effective in reducing the flow separation and the separation shock unsteadiness.
Keywords:  flow control      micro-ramps      separated flows      flow imaging  
Received:  20 September 2015      Revised:  29 November 2015      Accepted manuscript online: 
PACS:  47.85.L- (Flow control)  
  47.32.Ff (Separated flows)  
  47.80.Jk (Flow visualization and imaging)  
  47.80.Cb (Velocity measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11172326 and 11502280).
Corresponding Authors:  Qing-Hu Zhang     E-mail:  zhang_qinghu@163.com

Cite this article: 

Qing-Hu Zhang(张庆虎), Tao Zhu(朱涛), Shihe Yi(易仕和), Anping Wu(吴岸平) Flow control of micro-ramps on supersonic forward-facing step flow 2016 Chin. Phys. B 25 054701

[1] Gaitonde D V 2015 Prog. Aerospace Sci. 72 80
[2] Sun Q, Cui W, Li Y H, Cheng B Q, Jin D and Li J 2014 Chin. Phys. B 23 075210
[3] Li Q and Liu C Q 2010 J. Aircraft 47 2086
[4] Huang Y, Wang X N and Huang Z B 2013 Chin. Phys. Lett. 30 094702
[5] Frank K L, Li Q and Liu C Q 2012 Prog. Aerospace Sci. 53 30
[6] Lee S, Loth E, Georgiadis N J and DeBonis J R 2011 AIAA J. 49 97
[7] Anderson B H, Tinapple J and Suer L 2006 3rd AIAA Flow Control Conference, 5-8 June, San Francisco, USA, AIAA, p. 3197
[8] Babinsky H, Li Y and Ford C W P 2009 AIAA J. 47 668
[9] Blinde P L, Humble R A, van Oudheusden B W and Scarano F 2009 Shock Waves 19 507
[10] Sun Z, Schrijer F F J, Scarano F and van Oudheusden B W 2012 Phys. Fluids 24 055105
[11] Sun Z, Scarano F, van Oudheusden B W and Schrijer F F J 2014 AIAA J. 52 1518
[12] Verma S B, Manisankar C and Raju C 2012 Shock Waves 22 327
[13] Giepman R H M, Schrijer F F J and van Oudheusden B W 2014 Phys. Fluids 26 066101
[14] Largeau J F and Moriniere V 2007 Exp. Fluids 42 21
[15] Ren H Y and Wu Y H 2011 Phys. Fluids 23 045102
[16] Zhao Y X, Yi S H, Tian L F and Cheng Z Y 2009 Sci. China Ser. E 52 3640
[17] Wang B, Liu W D, Zhao Y X, Fan X Q and Wang C 2012 Phys. Fluids 24 055110
[18] Zhu Y Z, Yi S H, He L, Tian L F and Zhou Y W 2013 Chin. Phys. B 22 014702
[19] Wu Y, Yi S H, He L, Chen Z and Zhu Y Z 2014 Chin. Phys. B 23 114702
[20] Smits A J and Dussauge J P 2006 Turbulent Shear Layers in Supersonic Flow (2nd edn.) (New York: Springer) pp. 323-325
[1] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[2] Electromagnetic control of the instability in the liquid metal flow over a backward-facing step
Ya-Dong Huang(黄亚冬), Jia-Wei Fu(付佳维), and Long-Miao Chen(陈龙淼). Chin. Phys. B, 2022, 31(12): 124701.
[3] Flow separation control over an airfoil using continuous alternating current plasma actuator
Jian-Guo Zheng(郑建国). Chin. Phys. B, 2021, 30(3): 034702.
[4] Forebody asymmetric vortex control with extended dielectric barrier discharge plasma actuators
Borui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(6): 064703.
[5] Dynamic evolution of vortex structures induced bytri-electrode plasma actuator
Bo-Rui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(2): 024704.
[6] Dynamic stall control over an airfoil by NS-DBD actuation
He-Sen Yang(杨鹤森), Guang-Yin Zhao(赵光银)†, Hua Liang(梁华)‡, and Biao Wei(魏彪). Chin. Phys. B, 2020, 29(10): 105203.
[7] Direct numerical simulation on relevance of fluctuating velocities and drag reduction in turbulent channel flow with spanwise space-dependent electromagnetic force
Dai-Wen Jiang(江代文), Hui Zhang(张辉), Bao-Chun Fan(范宝春), An-Hua Wang(王安华). Chin. Phys. B, 2019, 28(5): 054701.
[8] Aerodynamic actuation characteristics of radio-frequency discharge plasma and control of supersonic flow
Zhen Yang(杨臻), Hui-Min Song(宋慧敏), Hong-Yu Wang(王宏宇), Shan-Guang Guo(郭善广), Min Jia(贾敏), Kang Wang(王康). Chin. Phys. B, 2019, 28(2): 024701.
[9] UAV flight test of plasma slats and ailerons with microsecond dielectric barrier discharge
Zhi Su(苏志), Jun Li(李军), Hua Liang(梁华), Bo-Rui Zheng(郑博睿), Biao Wei(魏彪), Jie Chen(陈杰), Li-Ke Xie(谢理科). Chin. Phys. B, 2018, 27(10): 105205.
[10] Comparison between AlN and Al2O3 ceramics applied to barrier dielectric of plasma actuator
Dong-Liang Bian(卞栋梁), Yun Wu(吴云), Min Jia(贾敏), Chang-Bai Long(龙昌柏), Sheng-Bo Jiao(焦胜博). Chin. Phys. B, 2017, 26(8): 084703.
[11] Mechanism of controlling turbulent channel flow with the effect of spanwise Lorentz force distribution
Yang Han(韩洋), Hui Zhang(张辉), Bao-Chun Fan(范宝春), Jian Li(李健), Dai-Wen Jiang(江代文), Zi-Jie Zhao(赵子杰). Chin. Phys. B, 2017, 26(8): 084704.
[12] Modeling and optimization of the multichannel spark discharge
Zhi-Bo Zhang(张志波), Yun Wu(吴云), Min Jia(贾敏), Hui-Min Song(宋慧敏), Zheng-Zhong Sun(孙正中), Ying-Hong Li(李应红). Chin. Phys. B, 2017, 26(6): 065204.
[13] Electric and plasma characteristics of RF discharge plasma actuation under varying pressures
Huimin Song(宋慧敏), Min Jia(贾敏), Di Jin(金迪), Wei Cui(崔巍), Yun Wu(吴云). Chin. Phys. B, 2016, 25(3): 035204.
[14] Shockwave-boundary layer interaction control by plasma aerodynamic actuation:An experimental investigation
Sun Quan (孙权), Cui Wei (崔巍), Li Ying-Hong (李应红), Cheng Bang-Qin (程邦勤), Jin Di (金迪), Li Jun (李军). Chin. Phys. B, 2014, 23(7): 075210.
[15] Experimental investigation of nanosecond discharge plasma aerodynamic actuation
Wu Yun(吴云), Li Ying-Hong(李应红), Jia Min(贾敏), Liang Hua(梁华), and Song Hui-Min(宋慧敏) . Chin. Phys. B, 2012, 21(4): 045202.
No Suggested Reading articles found!