Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 040301    DOI: 10.1088/1674-1056/25/4/040301
GENERAL Prev   Next  

Nonrelativistic Shannon information entropy for Kratzer potential

Najafizade S A1, Hassanabadi H1, Zarrinkamar S2
1 Physics Department, University of Shahrood, Shahrood, Iran;
2 Department of Basic Sciences, Garmsar Branch, Islamic Azad University, Garmsar, Iran
Abstract  The Shannon information entropy is investigated within the nonrelativistic framework. The Kratzer potential is considered as the interaction and the problem is solved in a quasi-exact analytical manner to discuss the ground and first excited states. Some interesting features of the information entropy densities as well as the probability densities are demonstrated. The Bialynicki-Birula-Mycielski inequality is also tested and found to hold for these cases.
Keywords:  Schrödinger equation      Kratzer potential      Shannon entropy  
Received:  16 November 2015      Revised:  06 December 2015      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.67.-a (Quantum information)  
Corresponding Authors:  Najafizade S A     E-mail:  najafizade1816@gmail.com

Cite this article: 

Najafizade S A, Hassanabadi H, Zarrinkamar S Nonrelativistic Shannon information entropy for Kratzer potential 2016 Chin. Phys. B 25 040301

[1] Shannon C E 1948 Bell Syst. Tech. J. 27 623
[2] Everett H 1973 The Many World Interpretation of Quantum Mechanics (Princeton: Princeton University Press, NJ)
[3] Hirschmann I I Jr 1957 Am. J. Math. 79 152
[4] Beckner W 1975 Ann. Math. 102 159
[5] Bialynicki-Birula I and Mycielski J 1975 Commun. Math. Phys. 44 129
[6] Bialynicki-Birula I and Rudnicki L, arXiv: 1001 4668
[7] Galindo A and Pascual P 1978 Quantum Mechanics (Berlin: Springer)
[8] Angulo J C, Antolin J and Zarzo A J C 1999 Eur. Phys. J. D 7 479
[9] Majernik V and Opatrný T 1996 J. Phys. A: Math. Gen. 29 2187
[10] Orlowski A 1997 Phys. Rev. A 56 2545
[11] Yáñez R J, VanAssche W and Dehesa J S 1994 Phys. Rev. A 50 3065
[12] VanAssche W, Yáñez R J and Dehesa J S 1995 J. Math. Phys. 36 4106
[13] Aptekarev A I, Dehesa J S and Yáñez R J 1994 J. Math. Phys. 35 4423
[14] Sánchez-Ruiz J, Artés P L, Martínez-Finkelshtein A and Dehesa J S 1999 J. Phys. A: Math. Gen. 32 7345
[15] Dehesa J S, Martínez-Finkelshtein A and Sánchez-Ruiz J 2001 Comput. J. Appl. Math. 133 23
[16] Dehesa J S, López-Rosa S, Martínez-Finkelshtein A and Yáñez R J 2010 Int. J. Quantum Chem. 110 1529
[17] Majerník V and Richterek L 1997 J. Phys. A: Math. Gen. 30 L49
[18] Sánchez-Ruiz J 1997 Phys. Lett. A 226 7
[19] Majerník V, Charvot R and Majerniková E 1999 J. Phys. A: Math. Gen. 32 2207
[20] Majerník V and Majerniková E 2002 J. Phys. A: Math. Gen. 35 5751
[21] Buyarov V, Artés P L, Martínez-Finkelshtein A and Van Assche W 2000 J. Phys. A: Math. Gen. 33 6549
[22] Sánchez-Ruiz J 2003 J. Phys. A: Math. Gen. 36 4857
[23] Buyarov V, Dehesa J S, Martínez-Finkelshtein A and Sánchez-Lara J 2004 SIAM J. Sci. Comput. 26 488
[24] Rudnicki L, Sanchez-Moreno P and Dehesa J S 2012 J. Phys. A: Math. Theor. 45 225303
[25] Ghasemi A, Hooshmandasl M R and Tavassoly M K 2011 Phys. Scr. 84 035007
[26] Dehesa J S, Yáñez R J, Aptekarev A I and Buyarov V 1998 J. Math. Phys. 39 3050
[27] Buyarov V S, López-Artés P, Martínez-Finkelshtein A and Van Assche W 2000 J. Phys. A: Math. Gen. 33 6549
[28] Atre R, Kumar A, Kumar C N and Panigrahi P 2004 Phys. Rev. A 69 052107
[29] Romera E and delosSantos F 2007 Phys. Rev. Lett. 99 263601
[30] Dehesa J S, Martínez-Finkelshtein A and Sorokin V N 2006 Mol. Phys. 104 613
[31] Aydiner E, Orta C and Sever R 2008 Int. J. Mod. Phys. B 22 231
[32] Kumar A 2005 Indian J. Pure Appl. Phys. 43 958
[33] Katriel J and Sen K D 2010 J. Comput. Appl. Math. 233 1399
[34] Patil S H and Sen K D 2007 Int. J. Quantum Chem. 107 1864
[35] Sen K D 2005 J. Chem. Phys. 123 074110
[36] Dutta D and Roy P 2011 J. Math. Phys. 52 032104
[37] Grinberg H 2010 Int. J. Mod. Phys. B 24 1079
[38] Abdel-Aty M, Al-Khayat I A and Hassan S S 2006 Int. J. Quantum Infor. 4 807
[39] Laguna H G and Sagar R P 2010 Int. J. Quantum Infor. 8 1089
[40] Cover T M and Thomas J A 1991 Elements of Information Theory (New York: Wiley)
[41] Hatori H 1958 Kodai Math. Sem. Rep. 10 172
[42] Sun G H, Dušan P, Popov D, Camacho-Nieto O and Dong S H 2015 Chin. Phys. B 24 100303
[43] Yáñez-Navarro G, Sun G H, Dytrich T, Launey K D, Dong S H, Draayer J P and Jerry J P 2014 Ann. Phys. 348 153
[44] Rudnicki L, Moreno P S and Dehesa J S 2012 J. Phys. A: Math. Theor. 45 225303
[45] Song X D, Sun G H and Dong S H 2015 Phys. Lett. A 379 1402
[46] Sun G H, Dong S H, Launey K D, Dytrych T and Draayer J P 2015 Int. J. Quantum Chem. 115 891
[47] Dong S, Sun G H, Dong S H and Draayer J P 2014 Phys. Lett. A 378 124
[48] Massen S E 2003 Phys. Rev. C 67 014314
[49] Lin C H and Ho Y K 2015 Chem. Phys. Lett. 633 261
[50] Dehesa J S, Van Assche W and Yáñez R J 1997 Math. Appl. Anal. 4 91
[51] Dehesa J S, Martínez-Finkelshtein A and Sorokin V N 2005 Department of Physics, Granada University, Spain, 104 pp. 613-622
[52] Qiang W C 2003 Chin. Phys. 12 1054
[53] Cheng Y F and Dai T Q 2007 Phys. Scr. 75 274
[54] Berkdemir C, Berkdemir A and Han J 2006 Chem. Phys. Lett. 417 326
[55] Ikhdair S M and Sever R 2008 Int. J. Mod. Phys. C 19 221
[56] Leroy R J and Bernstein R B 1970 J. Chem. Phys. 52 3869
[57] Pekeris C L 1934 Phys. Rev. 45 98
[58] Chen C Y and Dong S H 2005 Phys. Lett. A 335 374
[59] Gadre S R, Sears S B, Chakravorty S J and Bendale R D 1985 Phys. Rev. A 32 2602
[60] Massen S E and Panos C P 1998 Phys. Lett. A 246 530
[61] Esquivel R O, Flores-Gallegos N, Iuga C, Carrera E, Angulo J C and Antol”n J 2009 Theor. Chem. Acc. 124 445
[62] Esquivel R O, Flores-Gallegos N, Iuga C, Carrera E, Angulo J C and Antol“n J 2010 Phys. Lett. A 374 948
[63] Esquivel R O, Angulo J C, Antol“n J, Dehesa J S, López-Rosa S and Flores-Gallegos N 2010 Phys. Chem. Chem. Phys. 12 7108
[64] Parveen Fazal S, Sen K D, Gutierrez G and Fuentealba P 2000 Indian J. Chem. A 39 48
[65] Coffey M W 2007 Can. J. Phys. 85 733
[66] Sun G H and Dong S H 2013 Phys. Scr. 87 045003
[67] Sun G H, Dong S H and Naad S 2013 Ann. Phys. 525 934
[68] Sun G H, Avila Aoki M and Dong S H 2013 Chin. Phys. B 22 050302
[69] Dong S H 2001 Phys. Scr. 64 273
[70] Valencia-Torres R, Sun G H and Dong S H 2015 Phys. Scr. 90 035205
[71] Yahya W A, Oyewumi K J and Sen K D 2014 Indian J. Chem. A 53 1307
[1] Approximate solution to the time-dependent Kratzer plus screened Coulomb potential in the Feinberg-Horodecki equation
Mahmoud Farout, Ramazan Sever, Sameer M. Ikhdair. Chin. Phys. B, 2020, 29(6): 060303.
[2] Four-soliton solution and soliton interactions of the generalized coupled nonlinear Schrödinger equation
Li-Jun Song(宋丽军), Xiao-Ya Xu(徐晓雅), Yan Wang(王艳). Chin. Phys. B, 2020, 29(6): 064211.
[3] A nonlinear Schrödinger equation for gravity waves slowly modulated by linear shear flow
Shaofeng Li(李少峰), Juan Chen(陈娟), Anzhou Cao(曹安州), Jinbao Song(宋金宝). Chin. Phys. B, 2019, 28(12): 124701.
[4] Dark and multi-dark solitons in the three-component nonlinear Schrödinger equations on the general nonzero background
Zhi-Jin Xiong(熊志进), Qing Xu(许庆), Liming Ling(凌黎明). Chin. Phys. B, 2019, 28(12): 120201.
[5] Quantum pseudodots under the influence of external vector and scalar fields
M Eshghi, S M Ikhdair. Chin. Phys. B, 2018, 27(8): 080303.
[6] Multi-soliton solutions for the coupled modified nonlinear Schrödinger equations via Riemann-Hilbert approach
Zhou-Zheng Kang(康周正), Tie-Cheng Xia(夏铁成), Xi Ma(马茜). Chin. Phys. B, 2018, 27(7): 070201.
[7] Above-threshold ionization of hydrogen atom in chirped laser fields
Yuan-Yuan Ni(倪园园), Song-Feng Zhao(赵松峰), Xiao-Yong Li(李小勇), Guo-Li Wang(王国利), Xiao-Xin Zhou(周效信). Chin. Phys. B, 2018, 27(7): 073203.
[8] Localized waves in three-component coupled nonlinear Schrödinger equation
Tao Xu(徐涛), Yong Chen(陈勇). Chin. Phys. B, 2016, 25(9): 090201.
[9] Non-relativistic scattering amplitude for a new multi-parameter exponential-type potential
Yazarloo B H, Mehraban H, Hassanabadi H. Chin. Phys. B, 2016, 25(8): 080302.
[10] (2+1)-dimensional dissipation nonlinear Schrödinger equation for envelope Rossby solitary waves and chirp effect
Jin-Yuan Li(李近元), Nian-Qiao Fang(方念乔), Ji Zhang(张吉), Yu-Long Xue(薛玉龙), Xue-Mu Wang(王雪木), Xiao-Bo Yuan(袁晓博). Chin. Phys. B, 2016, 25(4): 040202.
[11] Effects of Shannon entropy and electric field on polaron in RbCl triangular quantum dot
M Tiotsop, A J Fotue, S C Kenfack, N Issofa, H Fotsin, L C Fai. Chin. Phys. B, 2016, 25(4): 048401.
[12] Exact solution of Schrödinger equation with q-deformed quantum potentials using Nikiforov–Uvarov method
Falaye B. J., Oyewumi K. J., Abbas M.. Chin. Phys. B, 2013, 22(11): 110301.
[13] Novel exact solutions of coupled nonlinear Schrödinger equations with time–space modulation
Chen Jun-Chao (陈俊超), Li Biao (李彪), Chen Yong (陈勇). Chin. Phys. B, 2013, 22(11): 110306.
[14] Analytical solutions and rogue waves in (3+1)-dimensional nonlinear Schrödinger equation
Ma Zheng-Yi(马正义) and Ma Song-Hua(马松华) . Chin. Phys. B, 2012, 21(3): 030507.
No Suggested Reading articles found!