Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 027901    DOI: 10.1088/1674-1056/25/2/027901
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Molecular dynamics simulation of Cun clusters scattering from a single-crystal Cu (111) surface: The influence of surface structure

Xianwen Luo(罗先文)1, Meng Wang(王勐)1, Bitao Hu(胡碧涛)2
1. Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999, China;
2. School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract  By performing a molecular dynamics simulation, fragmentation of Cun clusters scattering from a single-crystal Cu (111) surface is studied. The interactions among copper atoms are modeled by tight-binding potential, and the positions of the copper clusters at each time step are calculated by integrating the Newton equations of motion. The percentage of unfragmented clusters depends on the incident velocities, angles of incidence, and surface structure. The influence of surface structure on the fragment distribution is discussed, and the clusters appear to be more stable under an axial channeling condition. The fragment distribution shifting toward the small fragment range for cluster scattering along a random direction is confirmed, indicating that the cluster undergoes more intensive fragmentation.
Keywords:  cluster      scattering      channeling effect  
Received:  09 August 2015      Revised:  21 September 2015      Accepted manuscript online: 
PACS:  79.20.Rf (Atomic, molecular, and ion beam impact and interactions with surfaces)  
  61.85.+p (Channeling phenomena (blocking, energy loss, etc.) ?)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11405166).
Corresponding Authors:  Xianwen Luo     E-mail:  18681630692@163.com

Cite this article: 

Xianwen Luo(罗先文), Meng Wang(王勐), Bitao Hu(胡碧涛) Molecular dynamics simulation of Cun clusters scattering from a single-crystal Cu (111) surface: The influence of surface structure 2016 Chin. Phys. B 25 027901

[1] Vladimir N Popok, Barke Ingo, Eleanor E B Campbell and Meiwes-Broer Karl-Heinz 2011 Surface Science Reports 66 347
[2] Wang G Q, Li Y and Gao H 2013 Chin. Phys. Lett. 30 037901
[3] Othaman Z, Samavati Alireza and Ghoshal S K 2012 Chin. Phys. Lett. 29 118101
[4] Ghoshal S K, Othaman Z and Samavati Alireza 2012 Chin. Phys. Lett. 29 048101
[5] Zhu X R, Jiao Z and Wang W D 2013 Acta Phys. Sin. 62 077802 (in Chinese)
[6] Bolton K, M Svanberg and J B C Pettersson 1999 J. Chem. Phys. 110 5380
[7] Takaaki Aoki 2014 J. Comput. Electron. 13 108
[8] Andrey V Korol and Andrey Solov'yov 2013 Eur. Phys. J. D 67 30602
[9] Resende F J and Costa B V 2001 Surface Science 481 54
[10] Wethekam S, Schüller A and Winter H 2007 Nuclear Instruments and Methods in Physics Research B 258 68
[11] Thomas Kunert and Schmidt Rüdiger 2010 Phys. Rev. Lett. 86 5258
[12] Sibirev N V, Dubrovskii V G, Matetskiy A V, Bondarenko L V, Gruznev D V, Zotov A V and Saranin A A 2014 Appl. Surf. Sci. 307 46
[13] Hu L, Hammond K D, Wirth B D and Dimitrios Maroudas 2014 Surf. Sci. 626 L21
[14] Andersson P U and Pettersson J B C 1997 Z. Phys. D 41 57
[15] Tomsic A, Markovic N and Pettersson J B C 2000 Chem. Phys. Lett. 329 200
[16] Hillenkamp M, Pfister J and Kappes M M 2001 J. Chem. Phys. 114 10457
[17] Ray M P, Lake R E, Marston J B and Sosolik C E 2015 Surf. Sci. 635 37
[18] Wang P Z, Wang Y Y and Sun J R 2011 Chin. Phys. Lett. 28 053402
[19] Yu G H, Lu M and Zhang G G 2010 Chin. Phys. Lett. 27 052901
[20] Zhang X A, Mei C X and Zhao Y T 2013 Acta Phys. Sin. 62 173401 (in Chinese)
[21] Lei Y, Wang Y Y and Zhou X M 2013 Acta Phys. Sin. 62 157901 (in Chinese)
[22] Mei C X, Ren J R and Xiao G Q 2013 Acta Phys. Sin. 62 083201 (in Chinese)
[23] Sun Y B, Cheng R and Wang Y Y 2013 Chin. Phys. B 22 103403
[24] Kaplan A, Bekkerman A, Gordon E, Tsipinyuk B, Fleischer M and Kolodney E 2015 Nucl. Instrum. Method Phys. Res. B 232 184
[25] Béroff K, Chabot M, Mezdari F, Martinet G, Tuna T, Désesquelles P, LePadellec A and Barat M 2009 Nucl. Instrum. Methods Phys. Res. B 267 866
[26] Sébastien Zamith, Labastie Pierre and Jean-Marc L'Hermite 2012 J. Chem. Phys. 136 214301
[27] Anna Tomsic, Patrik U Andersson, Nikola Markovic and Jan B C Pettersson 2003 J. Chem. Phys. 119 4916
[28] Raz T and Levine R D 1996 J. Chem. Phys. 105 8097
[29] Lindemuth I R, Reinovsky R E, Chrien R E, Christian J M, Ekdahl C A, Goforth J H and Haight R C 1995 Phys. Rev. Lett. 75 1953
[30] Garanin Sergey F, Mamyshev Valentin I and Palagina Ekaterina M 2006 IEEE Trans. Plasma Sci. 34 2268
[31] Liu S G, Wang D Z and Huang Y 2013 Acta Phys. Sin. 62 227901 (in Chinese)
[32] Wang Y G, Xue J M and Zou X Q 2010 Chin. Phys. B 19 036102
[33] Tomsic A, Schroder H, Kompa K L and Gebhardt C R 2003 J. Chem. Phys. 119 6314
[34] Cheng H P and Landman U J 1994 Phys. Chem. 98 3527
[35] Bromann K, Félix C, Brune H, Harbich W, Monot R, Buttet J and Kern K 1996 Science 274 956
[36] Nambiar Sindhu R, Aneesh Padamadathil K and Rao Talasila P 2014 Journal of Electroanalytical Chemistry 722 60
[37] Hong Z H, Hwang S F and Fang T H 2011 Surf. Sci. 605 46
[38] Aoki T, Seki T and Matsuo 2010 J. Vacuum 84 994
[39] Amjad R J, Samavati Alireza and Othaman Z 2013 Chin. Phys. B 22 098102
[40] Zhang D K, Xiong S Z and Sun F H 2009 Chin. Phys. B 18 4558
[41] Zhang C H, Zhang L Q and Li B S 2008 Chin. Phys. B 17 3836
[42] Valeri Grigoryan, Denitsa Alamanova and Michael Springborg 2006 Phys. Rev. B 73 115415
[43] Luo X W, Hu B T and Zhang C J 2012 Phys. Rev. A 85 043201
[44] Fabrizio Cleri and Vittorio Rosato 1993 Phys. Rev. B 48 22
[45] Mazzone Giorgio, Rosato Vittorio, Pintore Marco, Delogu Francesco, Demontis Pierfranco and Suffritti Giuseppe B 1996 Phys. Rev. B 55 837
[46] Zhang J H, Zhang Y, Wen Y H and Zhu Z Z 2010 Comput. Mater. Sci. 48 250
[47] Anna Tomsic, Patrik U Andersson, Nikola Markovic, Witold Piskorz, Marcus Svanberg and Jan B C P 2001 J. Chem. Phys. 115 10509
[48] Hu B T, Chen C H, Song Y S and Gu J G 2007 Chin. Phys. 16 1009
[49] Luo X W, Hu B T, Zhang C J, Wang J J and Chen C H 2010 Phys. Rev. A 81 052902
[50] Chancey Ryan T, Oddershede Lene, Harris Frank E and Sabin John R 2003 Phys. Rev. A 67 043203
[51] Matsushita T, Nakajima K, Suzuki M and Kimura K 2007 Phys. Rev. A 76 032903
[52] Zimmermann S and Urbassek H M 2006 Eur. Phys. J. D 39 423
[53] Xu G Q, Holland R J and Steven L B 1989 J. Chem. Phys. 90 3831
[54] Alexander Y G 2015 Comput. Mater. Sci. 98 123
[55] Chen C K and Chang S C 2010 Appl. Surf. Sci. 256 2890
[56] d'Etat B, Briand J P, Ban G, de Billy L, Desclaux J P and Briand P 1993 Phys. Rev. A 48 1098
[57] Lederer S, Winter H and Winter H P 2007 Nucl. Instrum. Methods Phys. Res. B 258 87
[58] Winter H 2002 Phys. Rep. 367 387
[59] Winter H 2014 Surf. Interface Anal. 46 1137
[60] Mertens A and Winter H 2000 Phys. Rev. Lett. 85 2825
[61] Winter H P, Aumayr F, Lemell C, Burgdorfer J, Lederer S and Winter H 2007 Nucl. Instrum. Methods Phys. Res. B 256 455
[62] Tang Q H, Runge K, Cheng H P and Harris F E 2002 J. Phys. Chem. A 106 893
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[4] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[5] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[6] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[7] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[8] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[9] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[10] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[11] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[12] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[13] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[14] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[15] Oscillator strength study of the excitations of valence-shell of C2H2 by high-resolution inelastic x-ray scattering
Qiang Sun(孙强), Ya-Wei Liu(刘亚伟), Yuan-Chen Xu(徐远琛), Li-Han Wang(王礼涵), Tian-Jun Li(李天钧), Shu-Xing Wang(汪书兴), Ke Yang(杨科), and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(5): 053401.
No Suggested Reading articles found!