CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Molecular dynamics simulation of Cun clusters scattering from a single-crystal Cu (111) surface: The influence of surface structure |
Xianwen Luo(罗先文)1, Meng Wang(王勐)1, Bitao Hu(胡碧涛)2 |
1. Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999, China; 2. School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China |
|
|
Abstract By performing a molecular dynamics simulation, fragmentation of Cun clusters scattering from a single-crystal Cu (111) surface is studied. The interactions among copper atoms are modeled by tight-binding potential, and the positions of the copper clusters at each time step are calculated by integrating the Newton equations of motion. The percentage of unfragmented clusters depends on the incident velocities, angles of incidence, and surface structure. The influence of surface structure on the fragment distribution is discussed, and the clusters appear to be more stable under an axial channeling condition. The fragment distribution shifting toward the small fragment range for cluster scattering along a random direction is confirmed, indicating that the cluster undergoes more intensive fragmentation.
|
Received: 09 August 2015
Revised: 21 September 2015
Accepted manuscript online:
|
PACS:
|
79.20.Rf
|
(Atomic, molecular, and ion beam impact and interactions with surfaces)
|
|
61.85.+p
|
(Channeling phenomena (blocking, energy loss, etc.) ?)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11405166). |
Corresponding Authors:
Xianwen Luo
E-mail: 18681630692@163.com
|
Cite this article:
Xianwen Luo(罗先文), Meng Wang(王勐), Bitao Hu(胡碧涛) Molecular dynamics simulation of Cun clusters scattering from a single-crystal Cu (111) surface: The influence of surface structure 2016 Chin. Phys. B 25 027901
|
[1] |
Vladimir N Popok, Barke Ingo, Eleanor E B Campbell and Meiwes-Broer Karl-Heinz 2011 Surface Science Reports 66 347
|
[2] |
Wang G Q, Li Y and Gao H 2013 Chin. Phys. Lett. 30 037901
|
[3] |
Othaman Z, Samavati Alireza and Ghoshal S K 2012 Chin. Phys. Lett. 29 118101
|
[4] |
Ghoshal S K, Othaman Z and Samavati Alireza 2012 Chin. Phys. Lett. 29 048101
|
[5] |
Zhu X R, Jiao Z and Wang W D 2013 Acta Phys. Sin. 62 077802 (in Chinese)
|
[6] |
Bolton K, M Svanberg and J B C Pettersson 1999 J. Chem. Phys. 110 5380
|
[7] |
Takaaki Aoki 2014 J. Comput. Electron. 13 108
|
[8] |
Andrey V Korol and Andrey Solov'yov 2013 Eur. Phys. J. D 67 30602
|
[9] |
Resende F J and Costa B V 2001 Surface Science 481 54
|
[10] |
Wethekam S, Schüller A and Winter H 2007 Nuclear Instruments and Methods in Physics Research B 258 68
|
[11] |
Thomas Kunert and Schmidt Rüdiger 2010 Phys. Rev. Lett. 86 5258
|
[12] |
Sibirev N V, Dubrovskii V G, Matetskiy A V, Bondarenko L V, Gruznev D V, Zotov A V and Saranin A A 2014 Appl. Surf. Sci. 307 46
|
[13] |
Hu L, Hammond K D, Wirth B D and Dimitrios Maroudas 2014 Surf. Sci. 626 L21
|
[14] |
Andersson P U and Pettersson J B C 1997 Z. Phys. D 41 57
|
[15] |
Tomsic A, Markovic N and Pettersson J B C 2000 Chem. Phys. Lett. 329 200
|
[16] |
Hillenkamp M, Pfister J and Kappes M M 2001 J. Chem. Phys. 114 10457
|
[17] |
Ray M P, Lake R E, Marston J B and Sosolik C E 2015 Surf. Sci. 635 37
|
[18] |
Wang P Z, Wang Y Y and Sun J R 2011 Chin. Phys. Lett. 28 053402
|
[19] |
Yu G H, Lu M and Zhang G G 2010 Chin. Phys. Lett. 27 052901
|
[20] |
Zhang X A, Mei C X and Zhao Y T 2013 Acta Phys. Sin. 62 173401 (in Chinese)
|
[21] |
Lei Y, Wang Y Y and Zhou X M 2013 Acta Phys. Sin. 62 157901 (in Chinese)
|
[22] |
Mei C X, Ren J R and Xiao G Q 2013 Acta Phys. Sin. 62 083201 (in Chinese)
|
[23] |
Sun Y B, Cheng R and Wang Y Y 2013 Chin. Phys. B 22 103403
|
[24] |
Kaplan A, Bekkerman A, Gordon E, Tsipinyuk B, Fleischer M and Kolodney E 2015 Nucl. Instrum. Method Phys. Res. B 232 184
|
[25] |
Béroff K, Chabot M, Mezdari F, Martinet G, Tuna T, Désesquelles P, LePadellec A and Barat M 2009 Nucl. Instrum. Methods Phys. Res. B 267 866
|
[26] |
Sébastien Zamith, Labastie Pierre and Jean-Marc L'Hermite 2012 J. Chem. Phys. 136 214301
|
[27] |
Anna Tomsic, Patrik U Andersson, Nikola Markovic and Jan B C Pettersson 2003 J. Chem. Phys. 119 4916
|
[28] |
Raz T and Levine R D 1996 J. Chem. Phys. 105 8097
|
[29] |
Lindemuth I R, Reinovsky R E, Chrien R E, Christian J M, Ekdahl C A, Goforth J H and Haight R C 1995 Phys. Rev. Lett. 75 1953
|
[30] |
Garanin Sergey F, Mamyshev Valentin I and Palagina Ekaterina M 2006 IEEE Trans. Plasma Sci. 34 2268
|
[31] |
Liu S G, Wang D Z and Huang Y 2013 Acta Phys. Sin. 62 227901 (in Chinese)
|
[32] |
Wang Y G, Xue J M and Zou X Q 2010 Chin. Phys. B 19 036102
|
[33] |
Tomsic A, Schroder H, Kompa K L and Gebhardt C R 2003 J. Chem. Phys. 119 6314
|
[34] |
Cheng H P and Landman U J 1994 Phys. Chem. 98 3527
|
[35] |
Bromann K, Félix C, Brune H, Harbich W, Monot R, Buttet J and Kern K 1996 Science 274 956
|
[36] |
Nambiar Sindhu R, Aneesh Padamadathil K and Rao Talasila P 2014 Journal of Electroanalytical Chemistry 722 60
|
[37] |
Hong Z H, Hwang S F and Fang T H 2011 Surf. Sci. 605 46
|
[38] |
Aoki T, Seki T and Matsuo 2010 J. Vacuum 84 994
|
[39] |
Amjad R J, Samavati Alireza and Othaman Z 2013 Chin. Phys. B 22 098102
|
[40] |
Zhang D K, Xiong S Z and Sun F H 2009 Chin. Phys. B 18 4558
|
[41] |
Zhang C H, Zhang L Q and Li B S 2008 Chin. Phys. B 17 3836
|
[42] |
Valeri Grigoryan, Denitsa Alamanova and Michael Springborg 2006 Phys. Rev. B 73 115415
|
[43] |
Luo X W, Hu B T and Zhang C J 2012 Phys. Rev. A 85 043201
|
[44] |
Fabrizio Cleri and Vittorio Rosato 1993 Phys. Rev. B 48 22
|
[45] |
Mazzone Giorgio, Rosato Vittorio, Pintore Marco, Delogu Francesco, Demontis Pierfranco and Suffritti Giuseppe B 1996 Phys. Rev. B 55 837
|
[46] |
Zhang J H, Zhang Y, Wen Y H and Zhu Z Z 2010 Comput. Mater. Sci. 48 250
|
[47] |
Anna Tomsic, Patrik U Andersson, Nikola Markovic, Witold Piskorz, Marcus Svanberg and Jan B C P 2001 J. Chem. Phys. 115 10509
|
[48] |
Hu B T, Chen C H, Song Y S and Gu J G 2007 Chin. Phys. 16 1009
|
[49] |
Luo X W, Hu B T, Zhang C J, Wang J J and Chen C H 2010 Phys. Rev. A 81 052902
|
[50] |
Chancey Ryan T, Oddershede Lene, Harris Frank E and Sabin John R 2003 Phys. Rev. A 67 043203
|
[51] |
Matsushita T, Nakajima K, Suzuki M and Kimura K 2007 Phys. Rev. A 76 032903
|
[52] |
Zimmermann S and Urbassek H M 2006 Eur. Phys. J. D 39 423
|
[53] |
Xu G Q, Holland R J and Steven L B 1989 J. Chem. Phys. 90 3831
|
[54] |
Alexander Y G 2015 Comput. Mater. Sci. 98 123
|
[55] |
Chen C K and Chang S C 2010 Appl. Surf. Sci. 256 2890
|
[56] |
d'Etat B, Briand J P, Ban G, de Billy L, Desclaux J P and Briand P 1993 Phys. Rev. A 48 1098
|
[57] |
Lederer S, Winter H and Winter H P 2007 Nucl. Instrum. Methods Phys. Res. B 258 87
|
[58] |
Winter H 2002 Phys. Rep. 367 387
|
[59] |
Winter H 2014 Surf. Interface Anal. 46 1137
|
[60] |
Mertens A and Winter H 2000 Phys. Rev. Lett. 85 2825
|
[61] |
Winter H P, Aumayr F, Lemell C, Burgdorfer J, Lederer S and Winter H 2007 Nucl. Instrum. Methods Phys. Res. B 256 455
|
[62] |
Tang Q H, Runge K, Cheng H P and Harris F E 2002 J. Phys. Chem. A 106 893
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|