CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Molten-salt synthesis and composition-dependent luminescent properties of barium tungsto-molybdate-based solid solution phosphors |
Xiang-Hong He(贺香红)1, Zhao-Lian Ye(叶招莲)1,2, Ming-Yun Guan(关明云)1, Ning Lian(连宁)1, Jian-Hua Sun(孙建华)1 |
1. School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China; 2. Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environment Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China |
|
|
Abstract Pr3+-activated barium tungsto-molybdate solid solution phosphor Ba(Mo1-zWz)O4:Pr3+ is successfully fabricated via a facile molten-salt approach. The as-synthesized microcrystal is of truncated octahedron and exhibits deep-red-emitting upon blue light excitation. Powder x-ray diffraction and Raman spectroscopy techniques are utilized to investigate the formation of solid solution phosphor. The luminescence behaviors depend on the resulting composition of the microcrystals with fixed Pr3+-doping concentration, while the host lattices remain in a scheelite structure. The forming solid solution via the substitution of [WO4] for [MoO4] can significantly enhance its luminescence, which may be due to the fact that Ba(Mo1-zWz)O4:Pr3+ owns well-defined facets and uniform morphologies. Owing to its properties of high phase purity, well-defined facets, highly uniform morphologies, exceptional chemical and thermal stabilities, and stronger emission intensity, the resulting solid solution phosphor is expected to find potential applications in phosphor-converted white light-emitting diodes (LEDs).
|
Received: 24 July 2015
Revised: 20 September 2015
Accepted manuscript online:
|
PACS:
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
33.50.Dq
|
(Fluorescence and phosphorescence spectra)
|
|
78.30.-j
|
(Infrared and Raman spectra)
|
|
61.05.cp
|
(X-ray diffraction)
|
|
Fund: Project supported by the Construction Fund for Science and Technology Innovation Group from Jiangsu University of Technology, China, the Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, China (Grant No. KHK1409), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, and the National Natural Science Foundation of China (Grant No. 21373103). |
Corresponding Authors:
Xiang-Hong He
E-mail: hexh@jsut.edu.cn
|
Cite this article:
Xiang-Hong He(贺香红), Zhao-Lian Ye(叶招莲), Ming-Yun Guan(关明云), Ning Lian(连宁), Jian-Hua Sun(孙建华) Molten-salt synthesis and composition-dependent luminescent properties of barium tungsto-molybdate-based solid solution phosphors 2016 Chin. Phys. B 25 027802
|
[1] |
Schubert E F and Kim J K 2005 Science 308 1274
|
[2] |
Pimputkar S, Speck J S, DenBaars S P and Nakamura S 2009 Nat. Photon. 3 180
|
[3] |
Lin C C and Liu R S 2011 J. Phys. Chem. Lett. 2 1268
|
[4] |
Höppe H A 2009 Angew. Chem. Int. Ed. 48 3572
|
[5] |
Dai Q, Duty C E and Hu M Z 2010 Small 6 1577
|
[6] |
Allen S C and Steckl A J 2008 Appl. Phys. Lett. 92 1433091
|
[7] |
George N C, Denault K A and Seshadri R 2013 Ann. Rev. Mater. Res. 43 481
|
[8] |
Sommer C, Hartmann P, Pachler P, Hoschopf H and Wenzl F P 2012 J. Alloys Compd. 520 146
|
[9] |
He X, Lian N, Sun J and Guan M 2009 J. Mater. Sci. 44 4763
|
[10] |
Smet P F, Parmentier A B and Poelman D 2011 J. Electrochem. Soc. 158 R37
|
[11] |
Nersisyan H, Won H I and Won C W 2011 Chem. Commun. 47 11897
|
[12] |
Xie R J 2013 J. Am. Ceram. Soc. 96 665
|
[13] |
Pust P, Weiler V, Hecht C, Tücks A, Wochnik A S, Henβ A K and Schnick W 2014 Nat. Mater. 13 891
|
[14] |
Yang P, Li C, Wang W, Quan Z, Gai S and Lin J 2009 J. Solid State Chem. 182 2510
|
[15] |
Marques A P A, Motta F V, Cruz M A, Varela José A, Longo E and Rosa I LV 2011 Solid State Ionics 202 54
|
[16] |
Xia Z, Jin S, Sun J, Du H, Du P and Liao L 2011 J. Nanosci. Nanotechnol. 11 9612
|
[17] |
Rosa I L V, Marques A P A, Tanaka M T S, Motta F V, Varela J A, Leite E R and Longo E 2009 J. Fluoresc. 19 495
|
[18] |
Rosa I L V, Marques A P A, Tanaka M T S, Melo D M A, Leite E R, Longo E and Varela J A 2008 J. Fluoresc. 18 239
|
[19] |
Yang X, Liu J, Yang H, Yu X, Guo Y, Zhou Y and Liu J 2009 J. Mater. Chem. 19 3771
|
[20] |
Zhang J, Zhu L, Xie J, Chen Y and Wang Z 2015 Asian J. Chem. 27 2564
|
[21] |
Xia Z and Chen D 2010 J. Am. Ceram. Soc. 95 13971
|
[22] |
Yang X, Yu X, Yang H, Guo Y and Zhou Y 2009 J. Alloys Compd. 479 307
|
[23] |
He X, Guan M, Li Z, Shang T, Lian N and Zhou Q 2011 J. Am. Ceram. Soc. 94 2483
|
[24] |
Yang X, Zhou Y, Yu X, Demir H V and Sun X 2011 J. Mater. Chem. 21 9009
|
[25] |
Thirumalai J, Chandramohan R, Basheer A M, Ezhilvizhian S and Vijayan T A 2012 J. Mater. Sci.: Mater. Electron. 23 325
|
[26] |
Bharat L K, Lee S H and Yu J S. 2014 Mater. Res. Bull. 53 49
|
[27] |
Jia G, Huang C, Li L, Wang C, Song X, Song L and Ding S 2012 Opt. Mater. 35 285
|
[28] |
Jena P, Gupta S K, Natarajan V, Sahu M, Satyanarayana N and Venkateswarlu M 2015 J. Lumin. 158 203
|
[29] |
Cavalcante L S, Sczancoski J C, Lima L F Jr, Espinosa J W M, Pizani P S, Varela J A and Longo E 2008 Cryst. Growth Des. 9 1002
|
[30] |
He X, Guan M, Zhang C, Shang T, Lian N and Zhou Q 2011 J. Mater. Res. 26 2379
|
[31] |
He X, Guan M, Lian N, Sun J and Shang T 2010 J. Alloys Compd. 492 452
|
[32] |
Tsai Y T, Chiang C Y, Zhou W, Lee J F, Sheu H S and Liu R S 2015 J. Am. Chem. Soc. 137 8936
|
[33] |
Orive J, Mesa J L, Balda R, Fernaández J, Rodríguez Fernaández J, Rojo T and Arriortua M I 2011 Inorg. Chem. 50 12463
|
[34] |
Yan S A, Chang Y S, Hwang W S and Chang Y H 2012 J. Lumin. 132 1867
|
[35] |
Kang F, Peng M, Yang X, Dong G, Nie G, Liang W, Xu S and Qiu J 2014 J. Mater. Chem. C 2 6068
|
[36] |
Shi P, Xia Z, Molokeev M S and Atuchin V V 2014 Dalton Trans. 43 9669
|
[37] |
Afanasiev P 2007 Mater. Lett. 61 4622
|
[38] |
Basiev T T, Sobol A A, Voronko Y K and Zverev P G 2000 Opt. Mater. 15 205
|
[39] |
Jayaraman A, Wang S Y and Sharma S K 1995 Phys. Rev. B 52 9886
|
[40] |
Christofilos D, Arvanitidis J, Kampasakali E, Papagelis K, Ves S and Kourouklis G A 2004 Phys. Status Solidi 241 3155
|
[41] |
Marques V S, Cavalcante L S, Sczancoski J C, Alcântara A F P, Orlandi M O, Moraes E, Longo E, Varela J A, Li M S and Santos M R M C 2010 Cryst. Growth Des. 10 4752
|
[42] |
Li H L, Wang Z L, Xu S J and Hao J H 2009 J. Electrochem. Soc. 156 J112
|
[43] |
Liao J S, Qiu B, Wen H R, Li Y, Hong R J and You H Y 2011 J. Mater. Sci. 46 1184
|
[44] |
He X and Zhu Y 2008 J. Mater. Sci. 43 1515
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|