Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 017202    DOI: 10.1088/1674-1056/25/1/017202
RAPID COMMUNICATION Prev   Next  

Unexpected low thermal conductivity and large power factor in Dirac semimetal Cd3As2

Cheng Zhang(张成)1,2, Tong Zhou(周通)1,2,3, Sihang Liang(梁斯航)1,2, Junzhi Cao(曹钧植)1,2,Xiang Yuan(袁翔)1,2, Yanwen Liu(刘彦闻)1,2, Yao Shen(沈瑶)1,2, Qisi Wang(王奇思)1,2,Jun Zhao(赵俊)1,2, Zhongqin Yang(杨中芹)1,2,3, Faxian Xiu(修发贤)1,2
1. State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
2. Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433, China;
3. Key Laboratory for Computational Physical Sciences (MOE), Fudan University, Shanghai 200433, China
Abstract  

Thermoelectrics has long been considered as a promising way of power generation for the next decades. So far, extensive efforts have been devoted to the search of ideal thermoelectric materials, which require both high electrical conductivity and low thermal conductivity. Recently, the emerging Dirac semimetal Cd3As2, a three-dimensional analogue of graphene, has been reported to host ultra-high mobility and good electrical conductivity as metals. Here, we report the observation of unexpected low thermal conductivity in Cd3As2, one order of magnitude lower than the conventional metals or semimetals with a similar electrical conductivity, despite the semimetal band structure and high electron mobility. The power factor also reaches a large value of 1.58 mW·m-1·K-2 at room temperature and remains non-saturated up to 400 K. Corroborating with the first-principles calculations, we find that the thermoelectric performance can be well-modulated by the carrier concentration in a wide range. This work demonstrates the Dirac semimetal Cd3As2 as a potential candidate of thermoelectric materials.

Keywords:  Dirac semimetal      thermal conductivity      power factor      thermoelectric material  
Received:  25 November 2015      Revised:  25 November 2015      Accepted manuscript online: 
PACS:  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
  72.15.-v (Electronic conduction in metals and alloys)  
Corresponding Authors:  Faxian Xiu     E-mail:  faxian@fudan.edu.cn

Cite this article: 

Cheng Zhang(张成), Tong Zhou(周通), Sihang Liang(梁斯航), Junzhi Cao(曹钧植),Xiang Yuan(袁翔), Yanwen Liu(刘彦闻), Yao Shen(沈瑶), Qisi Wang(王奇思),Jun Zhao(赵俊), Zhongqin Yang(杨中芹), Faxian Xiu(修发贤) Unexpected low thermal conductivity and large power factor in Dirac semimetal Cd3As2 2016 Chin. Phys. B 25 017202

[1] Dresselhaus M, Chen S G, Tang M Y, Yang R, Lee G H, Wang D Z, Ren Z F, Fleurial J P and Gogna P 2007 Adv. Mater. 19 1043
[2] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[3] Wood C 1988 Rep. Prog. Phys. 51 459
[4] Tritt T M 2011 Ann. Rev. Mater. Res. 41 433
[5] Mahan G, Sales B and Sharp J 2008 Phys. Today 50 42
[6] Zhang G, Yu Q, Wang W and Li X 2010 Adv. Mater. 22 1959
[7] Ishiwata S, Shiomi Y, Lee J S, Bahramy M S, Suzuki T, Uchida M, Arita R, Taguchi Y and Tokura Y 2013 Nat. Mater. 12 512
[8] Takabatake T, Suekuni K, Nakayama T and Kaneshita E 2014 Rev. Mod. Phys. 86 669
[9] Wang Z, Weng H, Wu Q, Dai X and Fang Z 2013 Phys. Rev. B 88 125427
[10] Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z and Chen Y L 2014 Nat. Mater. 13 677
[11] Zhang C, Zhang E, Liu Y, Chen Z G, Liang S, Cao J, Yuan X, Tang L, Li Q, Gu T, Wu Y, Zou J and Xiu F 2015 arXiv:1504.07698[cond-mat.mtrl-sci]
[12] Jeon S, Zhou B B, Gyenis A, Feldman B E, Kimchi I, Potter A C, Gib-son Q D, Cava R J, Vishwanath A and Yazdani A 2014 Nat. Mater. 13 851
[13] Neupane M, Xu S Y, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang T R, Jeng H T and Lin H 2014 Nat. Commun. 5 3786
[14] Liang T, Gibson Q, Ali M N, Liu M, Cava R J and Ong N P 2014 Nat. Mater. 14 280
[15] Cao J, Liang S, Zhang C, Liu Y, Huang J, Jin Z, Chen Z. G, Wang Z, Wang Q, Zhao J, Li S. Dai X, Zou J, Xia Z, Li L and Xiu F 2014 Nat. Commun. 6 7779
[16] Spitzer D P 1966 J. Appl. Phys. 37 3795
[17] Tritt T M 2004 Thermal Conductivity: Theory, Properties, and Applications (Springer Science & Business Media)
[18] Zhao L D, Lo S. H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
[19] Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T and Snyder G J 2012 Nat. Mater. 11 422
[20] Sze S M and Ng K K 2006 Physics of Semiconductor Devices (John Wiley & Sons)
[21] Callaway J 1959 Phys. Rev. 113 1046
[22] Pariari A, Khan N and Mandal P 2015 arXiv:1502.02264[cond-mat.mtrl-sci]
[23] Zuev Y M, Chang W and Kim P 2009 Phys. Rev. Lett. 102 096807
[24] Sales B, Mandrus D and Williams R K 1996 Science 272 1325
[25] Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G and Ren Z 2008 Science 320 634
[26] Pariari A, Khan N and Mandal P 2015 arXiv:1508.02286[cond-mat.mtrl-sci]
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[5] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[6] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[7] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[8] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[9] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[10] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[11] Recent advances in organic, inorganic, and hybrid thermoelectric aerogels
Lirong Liang(梁丽荣), Xiaodong Wang(王晓东), Zhuoxin Liu(刘卓鑫), Guoxing Sun(孙国星), and Guangming Chen(陈光明). Chin. Phys. B, 2022, 31(2): 027903.
[12] Recent progress in design of conductive polymers to improve the thermoelectric performance
Zhen Xu (徐真), Hui Li (李慧), and Lidong Chen(陈立东). Chin. Phys. B, 2022, 31(2): 028203.
[13] Thermoelectric transport in conductive poly(3,4-ethylenedioxythiophene)
Meng Li(李萌), Zuzhi Bai(柏祖志), Xiao Chen(陈晓), Cong-Cong Liu(刘聪聪), Jing-Kun Xu(徐景坤), Xiao-Qi Lan(蓝小琪), and Feng-Xing Jiang(蒋丰兴). Chin. Phys. B, 2022, 31(2): 027201.
[14] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[15] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
No Suggested Reading articles found!