CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Manipulating coupling state and magnetism of Mn-doped ZnO nanocrystals by changing the coordination environment of Mn via hydrogen annealing |
Yan Cheng(程岩)1, Wen-Xian Li(李文献)2,3, Wei-Chang Hao(郝维昌)1, Huai-Zhe Xu(许怀哲)1, Zhong-Fei Xu(徐忠菲)1, Li-Rong Zheng(郑离荣)4, Jing Zhang(张静)4,Shi-Xue Dou(窦士学)3, Tian-Min Wang(王天民)1 |
1. Department of Physics and Center of Materials Physics and Chemistry, Beihang University, Beijing 100191, China;
2. Solar Energy Technologies, School of Computing, Engineering and Mathematics, University of Western Sydney, Penrith, NSW 2751, Australia;
3. Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong, NSW 2522, Australia;
4. Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Mn-doped ZnO nanocrystals are synthesized by a wet chemical route and treated in H2/Ar atmosphere with different H2/Ar ratios. It is found that hydrogen annealing could change the coordination environment of Mn in ZnO lattice and manipulate the magnetic properties of Mn-doped ZnO. Mn ions initially enter into interstitial sites and a Mn3+O6 octahedral coordination is produced in the prepared Mn-doped ZnO sample, in which the nearest neighbor Mn3+ and O2 ions could form a Mn3+-O2--Mn3+ complex. After H2 annealing, interstitial Mn ions can substitute for Zn to generate the Mn2+O4 tetrahedral coordination in the nanocrystals, in which neighboring Mn2+ ions and H atoms could form a Mn2+-O2--Mn2+ complex and Mn-H-Mn bridge structure. The magnetic measurement of the as-prepared sample shows room temperature paramagnetic behavior due to the Mn3+-O2--Mn3+ complex, while the annealed samples exhibit their ferromagnetism, which originates from the Mn-H-Mn bridge structure and the Mn-Mn exchange interaction in the Mn2+-O2--Mn2+ complex.
|
Received: 05 May 2015
Revised: 21 August 2015
Accepted manuscript online:
|
PACS:
|
73.21.-b
|
(Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)
|
|
75.50.Pp
|
(Magnetic semiconductors)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
78.70.Dm
|
(X-ray absorption spectra)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB934001) and the National Natural Science Foundation of China (Grant Nos. 51072012 and 51272015). |
Corresponding Authors:
Wei-Chang Hao, Huai-Zhe Xu
E-mail: whao@buaa.edu.cn;hzxu@buaa.edu.cn
|
Cite this article:
Yan Cheng(程岩), Wen-Xian Li(李文献), Wei-Chang Hao(郝维昌), Huai-Zhe Xu(许怀哲), Zhong-Fei Xu(徐忠菲), Li-Rong Zheng(郑离荣), Jing Zhang(张静),Shi-Xue Dou(窦士学), Tian-Min Wang(王天民) Manipulating coupling state and magnetism of Mn-doped ZnO nanocrystals by changing the coordination environment of Mn via hydrogen annealing 2016 Chin. Phys. B 25 017301
|
[1] |
Pearton S J, Abernathy C R, Norton D P, Hebard A F, Park Y D, Boatner L A and Budai J D 2003 Mater. Sci. Eng. R 40 137
|
[2] |
Akinaga H and Ohno H 2002 IEEE Trans. Nanotechnol. 1 19
|
[3] |
Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H and Awschalom D D 1999 Nature 402 790
|
[4] |
Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y and Ohtani K 2000 Nature 408 944
|
[5] |
Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
|
[6] |
Sato K and Katayama-Yoshida H 2001 Physica B 308 904
|
[7] |
Mukherjee D, Dhakal T, Srikanth H, Mukherjee P and Witanachchi S 2010 Phys. Rev. B 81 205202
|
[8] |
Jung S W, An S J, Yi G C, Jung C U, Lee S I and Cho S 2002 Appl. Phys. Lett. 80 4561
|
[9] |
Droubay T C, Keavney D J, Kaspar T C, Heald S M, Wang C M, Johnson C A, Whitaker K M, Gamelin D R and Chambers S A 2009 Phys. Rev. B 79 155203
|
[10] |
Fukumura T, Jin Z, Kawasaki M, Shono T, Hasegawa T, Koshihara S and Koinuma H 2001 Appl. Phys. Lett. 78 958
|
[11] |
Kundaliya D C, Ogale S B, Lofland S E, Dhar S, Metting C J, Shinde S R, Ma Z, Varughese B, Ramanujachary K V, Salamanca-Riba L and Venkatesan T 2004 Nat. Mater. 3 709
|
[12] |
Zheng R K, Liu H, Zhang X X, Roy V A L and Djurisic A B 2004 Appl. Phys. Lett. 85 2589
|
[13] |
Cheng X M and Chien C L 2003 J. Appl. Phys. 93 7876
|
[14] |
Inamdar D Y, Lad A D, Pathak A K, Dubenko I, Ali N and Mahamuni S 2010 J. Phys. Chem. C 114 1451
|
[15] |
Steven D C 2000 Los Alamos Sci. 26 422
|
[16] |
Céspedes E, Laguna-Marco M A, Jiménez-Villacorta F, Chaboy J, Boada R, Guglieri C, Andrés A D and Prieto C 2011 J. Phys. Chem. C 115 24092
|
[17] |
Zhang L, Li J, Du Y, Wang J, Wei X, Zhou J, Cheng J, Chu W, Jiang Z, Huang Y, Yan C, Zhang S and Wu Z 2012 New J. Phys. 14 013033
|
[18] |
Cheng Y, Hao W, Xu H, Yu Y, Wang T, Chen R, Zhang L, Du Y, Wang X L and Dou S X 2012 ACS Appl. Mater. Interfaces 4 4470
|
[19] |
Park C H and Chadi D J 2005 Phys. Rev. Lett. 94 127204
|
[20] |
Hao W, Li J, Xu H, Wang J and Wang T 2010 ACS Appl. Mater. Interfaces 2 2053
|
[21] |
Wang Z H, Geng D Y, Guo S, Hu W J and Zhang Z D 2008 Appl. Phys. Lett. 92 242505
|
[22] |
Manivannan A, Dutta P, Glaspell G and Seehra M S 2006 J. Appl. Phys. 99 08M110
|
[23] |
Sharma V K and Varma G D 2007 J. Appl. Phys. 102 056105
|
[24] |
Segura-Ruiz J, Martinez-Criado G, Chu M, Geburt S and Ronning C 2011 Nano Lett. 11 5322
|
[25] |
Kohler T, Armbruster T and Libowitzky E 1997 J. Solid State Chem. 133 486
|
[26] |
Du C L, Gu Z B, Lu M H, Wang J, Zhang S T, Zhao J, Cheng G X, Heng H and Chen Y F 2006 J. Appl. Phys. 99 123515
|
[27] |
Bundesmann C, Ashkenov N, Schubert M, Spemann D, Butz T, Kaidashev E M, Lorenz M and Grundmann M 2003 Appl. Phys. Lett. 83 1974
|
[28] |
Alaria J, Bouloudenine M, Schmerber G, Colis S, Dinia A, Turek P and Bernard M 2006 J. Appl. Phys. 99 08M118
|
[29] |
Samanta K, Dussan S, Katiyar R S and Bhattacharya P 2007 Appl. Phys. Lett. 90 261903
|
[30] |
Cong C J, Liao L, Liu Q Y, Li J C and Zhang K L 2006 Nanotechnology 17 1520
|
[31] |
Han Y F, Ramesh K, Chen L, Widjaja E, Chilukoti S and Chen F 2007 J. Phys. Chem. C 111 2830
|
[32] |
Hu C C, Wu Y T and Chang K H 2008 Chem. Mater. 20 2890
|
[33] |
Chen Y, Hao W C, Li W X, Xu H Z, Chen R and Dou S X 2013 Chin. Phys. B 22 107501
|
[34] |
Nogués J, Sort J, Langlais V, Skumryev V, Suriñach S, Muñoz J S and Baró M D 2005 Phys. Rep. 422 65
|
[35] |
West K, Nam D, Lu J, Bassim N, Picard Y, Stroud R and Wolf S 2010 J. Appl. Phys. 107 113915
|
[36] |
Sun Y, Cong J Z, Chai Y S, Yan L Q, Zhao Y L, Wang S G, Ning W and Zhang Y H 2013 Appl. Phys. Lett. 102 172406
|
[37] |
Martínez B, Sandiumenge F, Balcells L, Arbiol J, Sibieude F and Monty C 2005 Phys. Rev. B 72 165202
|
[38] |
Nagamiya T, Yosida K and Kubo R 1955 Adv. Phys. 4 1
|
[39] |
Park J K, Lee K W, Kweon H and Lee C E 2011 Appl. Phys. Lett. 98 102502
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|