Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 017301    DOI: 10.1088/1674-1056/25/1/017301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Manipulating coupling state and magnetism of Mn-doped ZnO nanocrystals by changing the coordination environment of Mn via hydrogen annealing

Yan Cheng(程岩)1, Wen-Xian Li(李文献)2,3, Wei-Chang Hao(郝维昌)1, Huai-Zhe Xu(许怀哲)1, Zhong-Fei Xu(徐忠菲)1, Li-Rong Zheng(郑离荣)4, Jing Zhang(张静)4,Shi-Xue Dou(窦士学)3, Tian-Min Wang(王天民)1
1. Department of Physics and Center of Materials Physics and Chemistry, Beihang University, Beijing 100191, China;
2. Solar Energy Technologies, School of Computing, Engineering and Mathematics, University of Western Sydney, Penrith, NSW 2751, Australia;
3. Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong, NSW 2522, Australia;
4. Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Mn-doped ZnO nanocrystals are synthesized by a wet chemical route and treated in H2/Ar atmosphere with different H2/Ar ratios. It is found that hydrogen annealing could change the coordination environment of Mn in ZnO lattice and manipulate the magnetic properties of Mn-doped ZnO. Mn ions initially enter into interstitial sites and a Mn3+O6 octahedral coordination is produced in the prepared Mn-doped ZnO sample, in which the nearest neighbor Mn3+ and O2 ions could form a Mn3+-O2--Mn3+ complex. After H2 annealing, interstitial Mn ions can substitute for Zn to generate the Mn2+O4 tetrahedral coordination in the nanocrystals, in which neighboring Mn2+ ions and H atoms could form a Mn2+-O2--Mn2+ complex and Mn-H-Mn bridge structure. The magnetic measurement of the as-prepared sample shows room temperature paramagnetic behavior due to the Mn3+-O2--Mn3+ complex, while the annealed samples exhibit their ferromagnetism, which originates from the Mn-H-Mn bridge structure and the Mn-Mn exchange interaction in the Mn2+-O2--Mn2+ complex.

Keywords:  coordination environment      magnetic coupling      x-ray absorption fine structure  
Received:  05 May 2015      Revised:  21 August 2015      Accepted manuscript online: 
PACS:  73.21.-b (Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)  
  75.50.Pp (Magnetic semiconductors)  
  75.75.-c (Magnetic properties of nanostructures)  
  78.70.Dm (X-ray absorption spectra)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2013CB934001) and the National Natural Science Foundation of China (Grant Nos. 51072012 and 51272015).

Corresponding Authors:  Wei-Chang Hao, Huai-Zhe Xu     E-mail:  whao@buaa.edu.cn;hzxu@buaa.edu.cn

Cite this article: 

Yan Cheng(程岩), Wen-Xian Li(李文献), Wei-Chang Hao(郝维昌), Huai-Zhe Xu(许怀哲), Zhong-Fei Xu(徐忠菲), Li-Rong Zheng(郑离荣), Jing Zhang(张静),Shi-Xue Dou(窦士学), Tian-Min Wang(王天民) Manipulating coupling state and magnetism of Mn-doped ZnO nanocrystals by changing the coordination environment of Mn via hydrogen annealing 2016 Chin. Phys. B 25 017301

[1] Pearton S J, Abernathy C R, Norton D P, Hebard A F, Park Y D, Boatner L A and Budai J D 2003 Mater. Sci. Eng. R 40 137
[2] Akinaga H and Ohno H 2002 IEEE Trans. Nanotechnol. 1 19
[3] Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H and Awschalom D D 1999 Nature 402 790
[4] Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y and Ohtani K 2000 Nature 408 944
[5] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
[6] Sato K and Katayama-Yoshida H 2001 Physica B 308 904
[7] Mukherjee D, Dhakal T, Srikanth H, Mukherjee P and Witanachchi S 2010 Phys. Rev. B 81 205202
[8] Jung S W, An S J, Yi G C, Jung C U, Lee S I and Cho S 2002 Appl. Phys. Lett. 80 4561
[9] Droubay T C, Keavney D J, Kaspar T C, Heald S M, Wang C M, Johnson C A, Whitaker K M, Gamelin D R and Chambers S A 2009 Phys. Rev. B 79 155203
[10] Fukumura T, Jin Z, Kawasaki M, Shono T, Hasegawa T, Koshihara S and Koinuma H 2001 Appl. Phys. Lett. 78 958
[11] Kundaliya D C, Ogale S B, Lofland S E, Dhar S, Metting C J, Shinde S R, Ma Z, Varughese B, Ramanujachary K V, Salamanca-Riba L and Venkatesan T 2004 Nat. Mater. 3 709
[12] Zheng R K, Liu H, Zhang X X, Roy V A L and Djurisic A B 2004 Appl. Phys. Lett. 85 2589
[13] Cheng X M and Chien C L 2003 J. Appl. Phys. 93 7876
[14] Inamdar D Y, Lad A D, Pathak A K, Dubenko I, Ali N and Mahamuni S 2010 J. Phys. Chem. C 114 1451
[15] Steven D C 2000 Los Alamos Sci. 26 422
[16] Céspedes E, Laguna-Marco M A, Jiménez-Villacorta F, Chaboy J, Boada R, Guglieri C, Andrés A D and Prieto C 2011 J. Phys. Chem. C 115 24092
[17] Zhang L, Li J, Du Y, Wang J, Wei X, Zhou J, Cheng J, Chu W, Jiang Z, Huang Y, Yan C, Zhang S and Wu Z 2012 New J. Phys. 14 013033
[18] Cheng Y, Hao W, Xu H, Yu Y, Wang T, Chen R, Zhang L, Du Y, Wang X L and Dou S X 2012 ACS Appl. Mater. Interfaces 4 4470
[19] Park C H and Chadi D J 2005 Phys. Rev. Lett. 94 127204
[20] Hao W, Li J, Xu H, Wang J and Wang T 2010 ACS Appl. Mater. Interfaces 2 2053
[21] Wang Z H, Geng D Y, Guo S, Hu W J and Zhang Z D 2008 Appl. Phys. Lett. 92 242505
[22] Manivannan A, Dutta P, Glaspell G and Seehra M S 2006 J. Appl. Phys. 99 08M110
[23] Sharma V K and Varma G D 2007 J. Appl. Phys. 102 056105
[24] Segura-Ruiz J, Martinez-Criado G, Chu M, Geburt S and Ronning C 2011 Nano Lett. 11 5322
[25] Kohler T, Armbruster T and Libowitzky E 1997 J. Solid State Chem. 133 486
[26] Du C L, Gu Z B, Lu M H, Wang J, Zhang S T, Zhao J, Cheng G X, Heng H and Chen Y F 2006 J. Appl. Phys. 99 123515
[27] Bundesmann C, Ashkenov N, Schubert M, Spemann D, Butz T, Kaidashev E M, Lorenz M and Grundmann M 2003 Appl. Phys. Lett. 83 1974
[28] Alaria J, Bouloudenine M, Schmerber G, Colis S, Dinia A, Turek P and Bernard M 2006 J. Appl. Phys. 99 08M118
[29] Samanta K, Dussan S, Katiyar R S and Bhattacharya P 2007 Appl. Phys. Lett. 90 261903
[30] Cong C J, Liao L, Liu Q Y, Li J C and Zhang K L 2006 Nanotechnology 17 1520
[31] Han Y F, Ramesh K, Chen L, Widjaja E, Chilukoti S and Chen F 2007 J. Phys. Chem. C 111 2830
[32] Hu C C, Wu Y T and Chang K H 2008 Chem. Mater. 20 2890
[33] Chen Y, Hao W C, Li W X, Xu H Z, Chen R and Dou S X 2013 Chin. Phys. B 22 107501
[34] Nogués J, Sort J, Langlais V, Skumryev V, Suriñach S, Muñoz J S and Baró M D 2005 Phys. Rep. 422 65
[35] West K, Nam D, Lu J, Bassim N, Picard Y, Stroud R and Wolf S 2010 J. Appl. Phys. 107 113915
[36] Sun Y, Cong J Z, Chai Y S, Yan L Q, Zhao Y L, Wang S G, Ning W and Zhang Y H 2013 Appl. Phys. Lett. 102 172406
[37] Martínez B, Sandiumenge F, Balcells L, Arbiol J, Sibieude F and Monty C 2005 Phys. Rev. B 72 165202
[38] Nagamiya T, Yosida K and Kubo R 1955 Adv. Phys. 4 1
[39] Park J K, Lee K W, Kweon H and Lee C E 2011 Appl. Phys. Lett. 98 102502
[1] Spin correlations in the S=1 armchair chain Ni2NbBO6 as seen from NMR
Kai-Yue Zeng(曾凯悦), Long Ma(马龙), Long-Meng Xu(徐龙猛), Zhao-Ming Tian(田召明), Lang-Sheng Ling(凌浪生), and Li Pi(皮雳). Chin. Phys. B, 2021, 30(4): 047503.
[2] Modeling and dynamics of double Hindmarsh-Rose neuron with memristor-based magnetic coupling and time delay
Guoyuan Qi(齐国元) and Zimou Wang(王子谋). Chin. Phys. B, 2021, 30(12): 120516.
[3] Low temperature Pmmm and C2/m phases in Sr2CuO3+δ high temperature superconductor
Hai-Bo Wang(王海波), Zhen-Lin Luo(罗震林), Yuan-Jun Yang(杨远俊), Qing-Qing Liu(刘清青), Si-Xia Hu(胡思侠), Meng-Meng Yang(杨蒙蒙), Chang-Qing Jin(靳常青), Chen Gao(高琛). Chin. Phys. B, 2019, 28(5): 056103.
[4] Magnetic interactions in a proposed diluted magnetic semiconductor (Ba1-xKx)(Zn1-yMny)2P2
Huan-Cheng Yang(杨焕成), Kai Liu(刘 凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2018, 27(6): 067103.
[5] Decoupling technique of patch antenna arrays with shared substrate by suppressing near-field magnetic coupling using magnetic metamaterials
Zhaotang Liu(柳兆堂), Jiafu Wang(王甲富), Shaobo Qu(屈绍波), Jieqiu Zhang(张介秋), Hua Ma(马华), Zhuo Xu(徐卓), Anxue Zhang(张安学). Chin. Phys. B, 2017, 26(4): 047301.
[6] Structural, electronic, and magnetic properties of vanadium atom-adsorbed MoSe2 monolayer
Ping Liu(刘萍), Zhen-Zhen Qin(秦真真), Yun-Liang Yue(乐云亮), Xu Zuo(左旭). Chin. Phys. B, 2017, 26(2): 027103.
[7] Pressure induced magnetic and semiconductor-metal phase transitions in Cr2MoO6
San-Dong Guo(郭三栋). Chin. Phys. B, 2016, 25(5): 057104.
[8] Structure and chemical valence study of Srn+1RunO3n+1 (n=1, 2, ∞) series
Zheng Long (郑龙), Zhu Xiao-Qin (朱小芹), Sui Yong-Xing (眭永兴), Xue Jian-Zhong (薛建忠), Liu Bo (刘波), Pei Ming-Xu (裴明旭). Chin. Phys. B, 2015, 24(5): 056101.
[9] Broadband energy harvesting via magnetic coupling between two movable magnets
Fan Kang-Qi (樊康旗), Xu Chun-Hui (徐春辉), Wang Wei-Dong (王卫东), Fang Yang (方阳). Chin. Phys. B, 2014, 23(8): 084501.
[10] Oscillation of coercivity between positive and negative in MnxGe1-x:H ferromagnetic semiconductor films
Qin Yu-Feng (秦羽丰), Yan Shi-Shen (颜世申), Xiao Shu-Qin (萧淑琴), Li Qiang (李强), Dai Zheng-Kun (代正坤), Shen Ting-Ting (沈婷婷), Yang Ai-Chun (杨爱春), Pei Juan (裴娟), Kang Shi-Shou (康仕寿), Dai You-Yong (代由勇), Liu Guo-Lei (刘国磊), Chen Yan-Xue (陈延学), Mei Liang-Mo (梅良模). Chin. Phys. B, 2013, 22(5): 057503.
[11] Electronic structures and magnetic couplings of B-, C-, and N-doped BeO
Pang Hua (庞华), Zhang Sha (张莎), Li Fa-Shen (李发伸). Chin. Phys. B, 2013, 22(4): 047504.
[12] The variation of Mn-dopant distribution state with x and its effect on the magnetic coupling mechanism in Zn1-xMnxO nanocrystals
Cheng Yan (程岩), Hao Wei-Chang (郝维昌), Li Wen-Xian (李文献), Xu Huai-Zhe (许怀哲), Chen Rui (陈蕊), Dou Shi-Xue (窦士学). Chin. Phys. B, 2013, 22(10): 107501.
[13] A theoretical study of the oxygen K-edge near-edge X-ray absorption ne structure of N2O/Ir(110)
Wu Tai-Quan(吴太权), Zhu Ping(朱萍), Wang Xin-Yan(王新燕), and Luo Hong-Lei (罗宏雷) . Chin. Phys. B, 2012, 21(7): 076801.
[14] Influence of reducing anneal on the ferromagnetism in single crystalline Co-doped ZnO thin films
Lu Zhong-Lin(路忠林), Zou Wen-Qin(邹文琴), Xu Ming-Xiang (徐明祥), and Zhang Feng-Ming(张凤鸣). Chin. Phys. B, 2010, 19(5): 056101.
[15] Microwave left-handed composite material made of slim ferrite rods and metallic wires
Xu Fang(徐芳), Bai Yang(白洋), Qiao Li-Jie(乔利杰), Zhao Hong-Jie(赵宏杰), and Zhou Ji(周济). Chin. Phys. B, 2009, 18(4): 1653-1657.
No Suggested Reading articles found!