Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 016101    DOI: 10.1088/1674-1056/25/1/016101
SPECIAL TOPIC—Fundamental physics research in lithium batteries Prev   Next  

FT-Raman spectroscopy study of solvent-in-salt electrolytes

Liumin Suo(索鎏敏), Zheng Fang(方铮), Yong-Sheng Hu(胡勇胜), Liquan Chen(陈立泉)
Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Cation-anion interaction with different ratios of salt to solvent is investigated by FT-Raman spectroscopy. The fitting result of the C-N-C bending vibration manifests that the cation-anion coordination structure changes tremendously with the variation of salt concentration. It is well known that lithium-ion transport in ultrahigh salt concentration electrolyte is dramatically different from that in dilute electrolyte, due to high viscosity and strong cation-anion interaction. In ultrahigh salt concentrated “solvent-in-salt” electrolyte (SIS-7#), we found, on one hand, that the cation and anion in the solution mainly formed cation-anion pairs with a high Li+ coordination number ( ≥ 1), including intimate ion pairs (20.1%) and aggregated ion pairs (79.9%), which not only cause low total ionic conductivity but also cause a high lithium transference number (0.73). A possible lithium transport mechanism is proposed: in solvent-in-salt electrolytes, lithium ions' direct movement presumably depends on Li-ion exchange between aggregated ion pairs and solvent molecules, which repeats a dissolving and re-complexing process between different oxygen groups of solvent molecules.
Keywords:  FT-Raman spectroscopy      lithium-ion batteries      electrolyte      solvent-in-salt electrolytes  
Received:  26 May 2015      Revised:  15 August 2015      Accepted manuscript online: 
PACS:  61.05.-a (Techniques for structure determination)  
  61.20.Gy (Theory and models of liquid structure)  
  61.20.Qg (Structure of associated liquids: electrolytes, molten salts, etc.)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2014CB932300), the National Natural Science Foundation of China (Grant Nos. 51222210, 51472268, and 11234013), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09010300).
Corresponding Authors:  Liumin Suo     E-mail:  suoliumin@gmail.com

Cite this article: 

Liumin Suo(索鎏敏), Zheng Fang(方铮), Yong-Sheng Hu(胡勇胜), Liquan Chen(陈立泉) FT-Raman spectroscopy study of solvent-in-salt electrolytes 2016 Chin. Phys. B 25 016101

[1] Bruce P G, Freunberger S A, Hardwick L J and Tarascon J M 2012 Nat. Mater. 11 19
[2] Ellis B L, Lee K T and Nazar L F 2010 Chem. Mater. 22 691
[3] Goodenough J B and Kim Y 2010 Chem. Mater. 22 587
[4] Scrosati B and Garche J 2010 J. Power Sources. 195 2419
[5] Tarascon J M and Armand M 2001 Nature 414 359
[6] Suo L, Zhu Y, Han F, Gao T, Luo C, Fan X, Hu Y S and Wang C 2015 Nano Energy 13 467
[7] Ma, J, Fang, Z, Yan, Y, Yang, Z, Gu, L, Hu Y S, Li H, Wang Z and Huang X 2015 Adv. Energy Mater. 5 1500046
[8] Mu L Q, Hu Y S and Chen L Q 2015 Chine. Phys. B 24 038202
[9] Zhao L, Pan H L, Hu Y S, Li H and Chen L Q 2012 Chine. Phys. B. 21 028201
[10] Xu K 2004 Chem. Rev. 104 4303
[11] Suo L M, Hu Y S, Li H, Armand M and Chen L Q 2013 Nat. Commun. 4 1481
[12] Seo D M, Borodin O, Han S D, Boyle P D and Henderson W A 2012 J. Electrochem. Soc. 159 A1489
[13] Seo D M, Borodin O, Han S D, Ly Q, Boyle P D and Henderson W A 2012 J. Electrochem. Soc. 159 A553
[14] Umebayashi Y, Mitsugi T, Fukuda S, Fujimori T, Fujii K, Kanzaki R, Takeuchi M and Ishiguro S I 2007 J. Phys. Chem. B. 111 13028
[15] Victor P J, Das B and Hazra D K 2001 J. Phys. Chem. A 105 5960
[16] Muhuri P K, Das B and Hazra D K 1997 J. Phys. Chem. B 101 3329
[17] Goutev N, Ohno K and Matsuura H 2000 J. Phys. Chem. A 104 9226
[18] Mohacek-Grosev V, Furic K and Ivankovic H 2013 Vib. Spectrosc. 64 101
[19] Rey I, Johansson P, Lindgren J, Lassegues J C, Grondin J and Servant L 1998 J. Phys. Chem. A 102 3249
[20] Brouillette D, Irish D E, Taylor N J, Gerald Perron, Odziemkowski M and Desnoyers J E 2002 Phys. Chem. Chem. Phys. 4 6063
[21] Matsubara K, Kaneuchi R and Maekita N 1998 J. Chem. Soc. Faraday T. 94 3601
[1] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[2] Copper ion beam emission in solid electrolyte Rb4Cu16I6.5Cl13.5
Tushagu Abudouwufu(吐沙姑·阿不都吾甫), Xiangyu Zhang (张翔宇), Wenbin Zuo (左文彬), Jinbao Luo(罗进宝), Yueqiang Lan(兰越强), Canxin Tian (田灿鑫), Changwei Zou(邹长伟), Alexander Tolstoguzov, and Dejun Fu(付德君). Chin. Phys. B, 2022, 31(4): 040704.
[3] Enhancing the thermoelectric performance through the mutual interaction between conjugated polyelectrolytes and single-walled carbon nanotubes
Shuxun Wan(万树勋), Zhongming Chen(陈忠明), Liping Hao(郝丽苹), Shichao Wang(王世超), Benzhang Li(李本章), Xiao Li(黎潇), Chengjun Pan(潘成军), and Lei Wang(王雷). Chin. Phys. B, 2022, 31(2): 028104.
[4] Electron density distribution of LiMn2O4 cathode investigated by synchrotron powder x-ray diffraction
Tongtong Shang(尚彤彤), Dongdong Xiao(肖东东), Qinghua Zhang(张庆华), Xuefeng Wang(王雪锋), Dong Su(苏东), and Lin Gu(谷林). Chin. Phys. B, 2021, 30(7): 078202.
[5] Morphologies of a spherical bimodal polyelectrolyte brush induced by polydispersity and solvent selectivity
Qing-Hai Hao(郝清海) and Jie Cheng(成洁). Chin. Phys. B, 2021, 30(6): 068201.
[6] Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives
Fangrong Hu(胡放荣), Mingyang Zhang(张铭扬), Wenbin Qi(起文斌), Jieyun Zheng(郑杰允), Yue Sun(孙悦), Jianyu Kang(康剑宇), Hailong Yu(俞海龙), Qiyu Wang(王其钰), Shijuan Chen(陈世娟), Xinhua Sun(孙新华), Baogang Quan(全保刚), Junjie Li(李俊杰), Changzhi Gu(顾长志), and Hong Li(李泓). Chin. Phys. B, 2021, 30(6): 068202.
[7] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
[8] Effect of external electric field on the terahertz transmission characteristics of electrolyte solutions
Jia-Hui Wang(王佳慧), Guo-Yang Wang(王国阳), Xin Liu(刘欣), Si-Yu Shao(邵思雨), Hai-Yun Huang(黄海云), Chen-Xin Ding(丁晨鑫), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2021, 30(11): 110204.
[9] A synaptic transistor with NdNiO3
Xiang Wang(汪翔), Chen Ge(葛琛), Ge Li(李格), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(9): 098101.
[10] Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions
Jinbing Zhang(张晋兵), Qiang Wang(王强), Zexian Cao(曹则贤). Chin. Phys. B, 2020, 29(8): 087804.
[11] Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator
Zhao Yan(闫昭), Hongyi Pan(潘弘毅), Junyang Wang(汪君洋), Rusong Chen(陈汝颂), Fei Luo(罗飞), Xiqian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2020, 29(8): 088201.
[12] Design and management of lithium-ion batteries: A perspective from modeling, simulation, and optimization
Qian-Kun Wang(王乾坤), Jia-Ni Shen(沈佳妮), Yi-Jun He(贺益君), Zi-Feng Ma(马紫峰). Chin. Phys. B, 2020, 29(6): 068201.
[13] Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries
Yuqi Li(李钰琦), Yaxiang Lu(陆雅翔), Liquan Chen(陈立泉), Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2020, 29(4): 048201.
[14] High-performance synaptic transistors for neuromorphic computing
Hai Zhong(钟海), Qin-Chao Sun(孙勤超), Guo Li(李果), Jian-Yu Du(杜剑宇), He-Yi Huang(黄河意), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Chen Ge(葛琛), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(4): 040703.
[15] Influence of fluoroethylene carbonate on the solid electrolyte interphase of silicon anode for Li-ion batteries: A scanning force spectroscopy study
Jieyun Zheng(郑杰允), Jialiang Liu(刘家亮), Suijun Wang(王绥军), Fei Luo(罗飞), Liubin Ben(贲留斌), Hong Li(李泓). Chin. Phys. B, 2020, 29(4): 048203.
No Suggested Reading articles found!