Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 015204    DOI: 10.1088/1674-1056/25/1/015204
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Conversion of an atomic to a molecular argon ion and low pressure argon relaxation

M N Stankov, A P Jovanović, V Lj Marković, S N Stamenković
Department of Physics, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, Niš 18001, Serbia
Abstract  The dominant process in relaxation of DC glow discharge between two plane parallel electrodes in argon at pressure 200 Pa is analyzed by measuring the breakdown time delay and by analytical and numerical models. By using the approximate analytical model it is found that the relaxation in a range from 20 to 60 ms in afterglow is dominated by Ar2+ ions, produced by atomic-to-molecular conversion of Ar+ ions in the first several milliseconds after the cessation of the discharge. This conversion is confirmed by the presence of double-Gaussian distribution for the formative time delay, as well as conversion maxima in a set of memory curves measured in different conditions. Finally, the numerical one-dimensional (1D) model for determining the number densities of dominant particles in stationary DC glow discharge and two-dimensional (2D) model for the relaxation are used to confirm the previous assumptions and to determine the corresponding collision and transport coefficients of dominant species and processes.
Keywords:  argon discharge      afterglow relaxation      fluid model      plasma reactions  
Received:  20 May 2015      Revised:  10 September 2015      Accepted manuscript online: 
PACS:  52.80.-s (Electric discharges)  
  52.20.-j (Elementary processes in plasmas)  
  52.65.Kj (Magnetohydrodynamic and fluid equation)  
  82.33.Xj (Plasma reactions (including flowing afterglow and electric discharges))  
Fund: Project supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. ON171025).
Corresponding Authors:  M N Stankov     E-mail:  marjansstankov@gmail.com

Cite this article: 

M N Stankov, A P Jovanović, V Lj Marković, S N Stamenković Conversion of an atomic to a molecular argon ion and low pressure argon relaxation 2016 Chin. Phys. B 25 015204

[1] Lieberman M A and Lichtenberg A J 1994 Principles of Plasma Discharges and Material Processing (New York: Wiley)
[2] Zissis G and Kitsinelis S 2009 J. Phys. D: Appl. Phys. 42 173001
[3] Mesyats G A 2005 Pulsed Power (New York: Springer)
[4] Cheng C, Shen J, Xiao D Z, Xie H B, Lan Y, Fang S D, Meng Y D and Chu P K 2014 Chin. Phys. B 23 075204
[5] Shkurenkov I A, Mankelevich Y A and Rakhimova T V 2011 Eur. Phys. J. D 62 213
[6] Lyndon G S and Platcow P A 2011 Metal Processing and Metal Working (McCann M ed.) 2011 Encyclopedia of Occupational Health and Safety (Stellman J M Editor-in-Chief) (International Labor Organization, Geneva)
[7] Biondi M A 1963 Phys. Rev. 129 1181
[8] Oskam H J and Mittelstadt V R 1963 Phys. Rev. 132 1445
[9] Mehr F J and Biondi M A 1968 Phys. Rev. 176 322
[10] Armour D G 1974 J. Phys. B: Atom. Mol. Phys. 7 1213
[11] Sugawara M, Okada T and Kobayashi Y 1986 J. Phys. D: Appl. Phys. 19 1213
[12] Okada T and Sugawara M 1993 J. Phys. D: Appl. Phys. 26 1680
[13] Wagenaars E, Bowden M D and Kroesen G M W 2005 Plasma Sources Sci. Technol. 14 342
[14] Bošan D A 1978 Proc. 5th Int. Conference on Gas Discharges, September 11-14, 1978, Liverpool University, Liverpool, UK, Stevenage: IEEE Conf. Publ. No. 165 273
[15] Bošan Dj A and Pejović M M 1979 J. Phys. D: Appl. Phys. 12 1699
[16] Bošan Dj A 1993 Invited Lecture in 16th Summer School and Int. Symp. on the Physics of Ionized Gases, September 25-28, 1993, Belgrade, Yugoslavia, pp. 15-40 (Milosavljević M and Petrović Z eds.) and references therein
[17] Pejović M M and Ristić G S 2002 Phys. Plasmas 9 364
[18] Pejović M M, Ristić G S and Karamarković J P 2002 J. Phys. D: Appl. Phys. 35 R91
[19] Kolts J H and Setser D W 1978 J. Chem. Phys. 68 4848
[20] Ferreira C M, Loureiro J and Ricard A 1985 J. Appl. Phys. 57 82
[21] Marković V Lj, Pejović M M and Petrović Z L 1994 J. Phys. D: Appl. Phys. 27 979
[22] Marković V Lj, Petrović Z Lj and Pejović M M 1994 J. Chem. Phys. 100 8514
[23] Petrović Z Lj, Marković V Lj, Pejović M M and Gocić S R 2001 J. Phys. D: Appl. Phys. 34 1756
[24] Marković V Lj, Pejović M M and Petrović Z Lj 1996 Proc. 13th Eur. Sectional Conf. on At. Mol. Phys. Ionized Gases, August 27-30, 1996, Poprad, Slovakia (Published by EPS, Lukač P, Košinar I and Skalny J D eds.) 20E Part A 45
[25] Marković V Lj, Pejović M M, Petrović Z Lj and Manola S S 1996 Proc. 3rd General Conf. Balkan Physical Union, September 2-5, 1996, Cluj-Napoca, Romania (1997 Proc. Suppl. Balkan Phys. Lett. 5 133)
[26] Marković V Lj, Gocić S R, Stamenković S N and Petrović Z Lj 2005 Phys. Plasmas 12 073502
[27] Huo W G, Jian S J, Yao J and Ding Z F 2014 Phys. Plasmas 21 053505
[28] Johnsen R, Chen A and Biondi M 1980 J. Chem. Phys. 73 1717
[29] Morgan C G 1978 Electrical Breakdown of Gases (Chichester: John Wiley & Sons) p. 656
[30] Marković V Lj, Popović B Č, Jovanović A P, Stamenković S N and Stankov M N 2015 Europhys. Lett. 109 15002
[31] Stamenković S N, Marković V Lj, Gocić S R and Jovanović A P 2013 Vacuum 89 62
[32] Jovanović A P, Popović B Č, Marković V Lj, Stamenković S N and Stankov M N 2014 Eur. Phys. J. Appl. Phys. 67 20801
[33] Ellis H W, Pai R Y and McDaniel E W 1976 At. Data Nucl. Data Tables 17 177
[34] von Engel A 1983 Electric Plasmas: their Nature and Uses (London: Taylor and Francis Ltd.)
[35] Marković V Lj, Petrović Z Lj and Pejović M M 1997 Plasma Sources Sci. Technol. 6 240
[36] Rafatov I, Bogdanov E A and Kudryavtsev A A 2012 Phys. Plasmas 19 093503
[37] Stankov M N, Petković M D, Marković V Lj, Stamenković S N and Jovanović A P 2015 Chin. Phys. Lett. 32 025101
[38] Liu X M, Song Y H and Wang Y N 2011 Chin. Phys. B 20 065205
[39] Li X C, Niu D Y, Xu L F, Jia P Y and Chang Y Y 2012 Chin. Phys. B 21 075204
[40] Kudryavtsev A A, Morin A V and Tsendin L D 2008 Technol. Phys. 53 1029
[41] Kruithof A A 1940 Physica 7 519
[42] Lide D 2009 CRC Handbook of Chemistry and Physics (Poth edn.) (Boca Raton, FL: CRC Press) pp. 12-124
[43] Wiese W L 1979 Progress in Atomic Physics (Hanle W and Kleinpoppen H eds.) (New York: Plenum) Part B
[44] Becker M M, Loffhagen D and Schmidt W 2009 Comput. Phys. Commun. 180 1230
[45] Fiala A, Pitchford L C and Boeuf J P 1994 Phys. Rev. E 49 5607
[46] Sobota A, van Dijk J and Haverlag M 2011 J. Phys. D: Appl. Phys. 44 224003
[47] Lymberopoulos D P and Economou D J 1993 J. Appl. Phys. 73 3668
[48] Rafatov I R, Akbar D and Bilikmen S 2007 Phys. Lett. A 367 114
[49] Strikwerda J C 2004 Finite Difference Schemes and Partial Differential Equations (Philadelphia: SIAM)
[50] Scharfetter D L and Gummel H K 1969 IEEE Trans. Electron. Devices 16 64
[51] Hoffman J 2001 Numerical Methods for Engineers and Scientists (New York: Marcel Dekker)
[52] Basha T S and Abbas A 1993 J. Phys. Soc. Jpn. 62 4255
[53] Jovanović A P 2014 J. Phys. Conf. Ser. 565 012015
[54] Alis W P 1956 Handbuch der Physik, Vol. 21, in: Electron-Emission Gas Discharges I, Flügge S eds. (Berlin: Springer-Verlag) pp. 383-444
[55] Phelps A V 1990 J. Res. Natl. Inst. Stand. Technol. 95 407
[1] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[2] Temperature and current sensitivity extraction of optical superconducting transition-edge sensors based on a two-fluid model
Yue Geng(耿悦), Pei-Zhan Li(李佩展), Jia-Qiang Zhong(钟家强), Wen Zhang(张文), Zheng Wang(王争), Wei Miao(缪巍), Yuan Ren(任远), and Sheng-Cai Shi(史生才). Chin. Phys. B, 2021, 30(9): 098501.
[3] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[4] Similarity principle of microwave argon plasma at low pressure
Xiao-Yu Han(韩晓宇), Jun-Hong Wang(王均宏), Mei-E Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yu-Jian Li(李雨键). Chin. Phys. B, 2018, 27(8): 085206.
[5] Numerical study on discharge characteristics influenced by secondary electron emission in capacitive RF argon glow discharges by fluid modeling
Lu-Lu Zhao(赵璐璐), Yue Liu(刘悦), Tagra Samir. Chin. Phys. B, 2018, 27(2): 025201.
[6] Gas flow characteristics of argon inductively coupled plasma and advections of plasma species under incompressible and compressible flows
Shu-Xia Zhao(赵书霞), Zhao Feng(丰曌). Chin. Phys. B, 2018, 27(12): 124701.
[7] Influence of a centered dielectric tube on inductively coupled plasma source: Chamber structures and plasma characteristics
Zhen-Hua Bi(毕振华), Yi Hong(洪义), Guang-Jiu Lei(雷光玖), Shuai Wang(王帅), You-Nian Wang(王友年), Dong-Ping Liu(刘东平). Chin. Phys. B, 2017, 26(7): 075203.
[8] Effect of air breakdown on microwave pulse energy transmission
Pengcheng Zhao(赵朋程), Lixin Guo(郭立新), Panpan Shu(舒盼盼). Chin. Phys. B, 2017, 26(2): 029201.
[9] Numerical simulation of a direct current glow discharge in atmospheric pressure helium
Zeng-Qian Yin(尹增谦), Yan Wang(汪岩), Pan-Pan Zhang(张盼盼), Qi Zhang(张琦), Xue-Chen Li(李雪辰). Chin. Phys. B, 2016, 25(12): 125203.
[10] Two-dimensional numerical study of an atmospheric pressurehelium plasma jet with dual-power electrode
Yan Wen (晏雯), Liu Fu-Cheng (刘福成), Sang Chao-Feng (桑超峰), Wang De-Zhen (王德真). Chin. Phys. B, 2015, 24(6): 065203.
[11] Short-pulse high-power microwave breakdown at high pressures
Zhao Peng-Cheng (赵朋程), Liao Cheng (廖成), Feng Ju (冯菊). Chin. Phys. B, 2015, 24(2): 025101.
[12] A computational modeling study on the helium atmospheric pressure plasma needle discharge
Qian Mu-Yang (钱沐杨), Yang Cong-Ying (杨从影), Liu San-Qiu (刘三秋), Wang Zhen-Dong (王震东), Lv Yan (吕燕), Wang De-Zhen (王德真). Chin. Phys. B, 2015, 24(12): 125202.
[13] Effect of microwave frequency on plasma formation in air breakdown at atmospheric pressure
Zhao Peng-Cheng (赵朋程), Guo Li-Xin (郭立新), Li Hui-Min (李慧敏). Chin. Phys. B, 2015, 24(10): 105102.
[14] Mode transition in homogenous dielectric barrier discharge in argon at atmospheric pressure
Liu Fu-Cheng (刘富成), He Ya-Feng (贺亚峰), Wang Xiao-Fei (王晓菲). Chin. Phys. B, 2014, 23(7): 075209.
[15] Validity of the two-term Boltzmann approximation employed in the fluid model for high-power microwave breakdown in gas
Zhao Peng-Cheng (赵朋程), Liao Cheng (廖成), Yang Dan (杨丹), Zhong Xuan-Ming (钟选明). Chin. Phys. B, 2014, 23(5): 055101.
No Suggested Reading articles found!