Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 040703    DOI: 10.1088/1674-1056/ab7806
Special Issue: SPECIAL TOPIC — Physics in neuromorphic devices
TOPICAL REVIEW—Physics in neuromorphic devices Prev   Next  

High-performance synaptic transistors for neuromorphic computing

Hai Zhong(钟海)1, Qin-Chao Sun(孙勤超)1, Guo Li(李果)1, Jian-Yu Du(杜剑宇)1,2, He-Yi Huang(黄河意)1,2, Er-Jia Guo(郭尔佳)1,3, Meng He(何萌)1, Can Wang(王灿)1,2,4, Guo-Zhen Yang(杨国桢)1, Chen Ge(葛琛)1,2, Kui-Juan Jin(金奎娟)1,2,4
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Science, Beijing 100049, China;
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  The further development of traditional von Neumann-architecture computers is limited by the breaking of Moore's law and the von Neumann bottleneck, which make them unsuitable for future high-performance artificial intelligence (AI) systems. Therefore, new computing paradigms are desperately needed. Inspired by the human brain, neuromorphic computing is proposed to realize AI while reducing power consumption. As one of the basic hardware units for neuromorphic computing, artificial synapses have recently aroused worldwide research interests. Among various electronic devices that mimic biological synapses, synaptic transistors show promising properties, such as the ability to perform signal transmission and learning simultaneously, allowing dynamic spatiotemporal information processing applications. In this article, we provide a review of recent advances in electrolyte- and ferroelectric-gated synaptic transistors. Their structures, materials, working mechanisms, advantages, and disadvantages will be presented. In addition, the challenges of developing advanced synaptic transistors are discussed.
Keywords:  synaptic transistor      artificial synapse      synaptic plasticity      electrolyte gating      ferroelectric gating  
Received:  10 January 2020      Revised:  15 February 2020      Accepted manuscript online: 
PACS:  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  73.40.Mr (Semiconductor-electrolyte contacts)  
  85.30.Tv (Field effect devices)  
  85.50.Gk (Non-volatile ferroelectric memories)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFA0303604 and 2019YFA0308500), the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2018008), the National Natural Science Foundation of China (Grant Nos. 11674385, 11404380, 11721404, and 11874412), and the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (Grant No. QYZDJSSW-SLH020).
Corresponding Authors:  Chen Ge, Kui-Juan Jin     E-mail:;

Cite this article: 

Hai Zhong(钟海), Qin-Chao Sun(孙勤超), Guo Li(李果), Jian-Yu Du(杜剑宇), He-Yi Huang(黄河意), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Chen Ge(葛琛), Kui-Juan Jin(金奎娟) High-performance synaptic transistors for neuromorphic computing 2020 Chin. Phys. B 29 040703

[1] Kuzum D, Yu S and Philip Wong H S 2013 Nanotechnology 24 382001
[2] He Y, Yang Y, Nie S, Liu R and Wan Q 2018 J. Mater. Chem. C 6 5336
[3] Tang J, Yuan F, Shen X, Wang Z, Rao M, He Y, Sun Y, Li X, Zhang W, Li Y, Gao B, Qian H, Bi G, Song S, Yang J J and Wu H 2019 Adv. Mater. 31 1902761
[4] Drachman D A 2005 Neurology 64 2004
[5] Zucker R S and Regehr W G 2002 Annu. Rev. Physiol. 64 355
[6] Smith A J, Owens S and Forsythe I D 2000 J. Physiol. 529 681
[7] Bi G Q and Poo M M 1998 J. Neurosci. 18 10464
[8] Rogers R R, Krause D W and Curry Rogers K 2003 Nature 422 515
[9] Markram H, Gerstner W and Sjöström P J 2012 Front. Synaptic Neurosci. 4 2
[10] Rotman Z, Deng P Y and Klyachko V A 2011 J. Neurosci. 31 14800
[11] Kim M K and Lee J S 2018 ACS Nano 12 1680
[12] Lamprecht R and LeDoux J 2004 Nat. Rev. Neurosci. 5 45
[13] Abbott L F and Regehr W G 2004 Nature 431 796
[14] Fuller E J, Keene S T, Melianas A, Wang Z, Agarwal S, Li Y, Tuchman Y, James C D, Marinella M J, Yang J J, Salleo A and Talin A A 2019 Science 364 570
[15] van de Burgt Y, Melianas A, Keene S T, Malliaras G and Salleo A 2018 Nat. Electron. 1 386
[16] Upadhyay N K, Jiang H, Wang Z, Asapu S, Xia Q and Joshua Yang J 2019 Adv. Mater. Technol. 4 1800589
[17] Wan Q, Sharbati M T, Erickson J R, Du Y and Xiong F 2019 Adv. Mater. Technol. 4 1900037
[18] Esser S K, Merolla P A, Arthur J V, Cassidy A S, Appuswamy R, Andreopoulos A, Berg D J, McKinstry J L, Melano T, Barch D R, di Nolfo C, Datta P, Amir A, Taba B, Flickner M D and Modha D S 2016 Proc. Natl. Acad. Sci. USA 113 11441
[19] Yang C S, Shang D S, Liu N, Fuller E J, Agrawal S, Talin A A, Li Y Q, Shen B G and Sun Y 2018 Adv. Funct. Mater. 28 1804170
[20] Wang J and Zhuge F 2019 Adv. Mater. Technol. 4 1800544
[21] Li J K, Ge C, Lu H T, Guo H Z, Guo E J, He M, Wang C, Yang G Z and Jin K J 2019 ACS Appl. Mater. Interfaces 11 43473
[22] Davies M, Srinivasa N, Lin T, Chinya G, Cao Y, Choday S H, Dimou G, Joshi P, Imam N, Jain S, Liao Y, Lin C, Lines A, Liu R, Mathaikutty D, McCoy S, Paul A, Tse J, Venkataramanan G, Weng Y, Wild A, Yang Y and Wang H 2018 IEEE Micro 38 82
[23] Yang J J, Strukov D B and Stewart D R 2013 Nat. Nanotechnol. 8 13
[24] Burr G W, Shelby R M, Sebastian A, Kim S, Kim S, Sidler S, Virwani K, Ishii M, Narayanan P, Fumarola A, Sanches L L, Boybat I, Le Gallo M, Moon K, Woo J, Hwang H and Leblebici Y 2016 Adv. Phys. X 2 89
[25] Prezioso M, Merrikh-Bayat F, Hoskins B D, Adam G C, Likharev K K and Strukov D B 2015 Nature 521 61
[26] Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P and Lu W 2010 Nano Lett. 10 1297
[27] Chen Y H, Xu W, Wang Y Q, Wang X, Li Y F, Liang D K, Lu L Q, Liu X W, Lian X J, Hu E T, Guo Y F, Xu J G, Tong Y and Xiao J 2019 Acta. Phys. Sin. 68 098501 (in Chinese)
[28] Wang S P, He C L, Tang J, Yang R, Shi D X and Zhang G Y 2019 Chin. Phys. B 28 017304
[29] Tuma T, Pantazi A, Le Gallo M, Sebastian A and Eleftheriou E 2016 Nat. Nanotechnol. 11 693
[30] Chanthbouala A, Garcia V, Cherifi R O, Bouzehouane K, Fusil S, Moya X, Xavier S, Yamada H, Deranlot C, Mathur N D, Bibes M, Barthélémy A and Grollier J 2012 Nat. Mater. 11 860
[31] Vincent A F, Larroque J, Locatelli N, Romdhane N B, Bichler O, Gamrat C, Zhao W S, Klein J, Galdin-Retailleau S and Querlioz D 2015 IEEE Trans. Biomed. Circuits Syst. 9 166
[32] Zhong H, Wen Y, Zhao Y, Zhang Q, Huang Q, Chen Y, Cai J, Zhang X, Li R W, Bai L, Kang S, Yan S and Tian Y 2019 Adv. Funct. Mater. 29 1806460
[33] Zidan M A, Strachan J P and Lu W D 2018 Nat. Electron. 1 22
[34] Zuo F, Panda P, Kotiuga M, Li J, Kang M, Mazzoli C, Zhou H, Barbour A, Wilkins S, Narayanan B, Cherukara M, Zhang Z, Sankaranarayanan S K R S, Comin R, Rabe K M, Roy K and Ramanathan S 2017 Nat. Commun. 8 240
[35] Dai S, Zhao Y, Wang Y, Zhang J, Fang L, Jin S, Shao Y and Huang J 2019 Adv. Funct. Mater. 29 1903700
[36] Chen Y, Yu H, Gong J, Ma M, Han H, Wei H and Xu W 2019 Nanotechnology 30 012001
[37] Han H, Yu H, Wei H, Gong J and Xu W 2019 Small 15 1900695
[38] Nishitani Y, Kaneko Y, Ueda M, Morie T and Fujii E 2012 J. Appl. Phys. 111 124108
[39] Sun J, Oh S, Choi Y, Seo S, Oh M J, Lee M, Lee W B, Yoo P J, Cho J H and Park J H 2018 Adv. Funct. Mater. 28 1804397
[40] Wan C J, Zhu L Q, Zhou J M, Shi Y and Wan Q 2014 Nanoscale 6 4491
[41] Wan X, Yang Y, Feng P, Shi Y and Wan Q 2016 IEEE Electron Device Lett. 37 299
[42] Shao F, Feng P, Wan C, Wan X, Yang Y, Shi Y and Wan Q 2017 Adv. Electron. Mater. 3 1600509
[43] Leighton C 2019 Nat. Mater. 18 13
[44] Ren Y, Yang X, Zhou L, Mao J Y, Han S T and Zhou Y 2019 Adv. Funct. Mater. 29 1902105
[45] Yu F and Zhu L Q 2019 Phys. Status Solidi Rapid Res. Lett. 13 1800674
[46] Jang S, Jang S, Lee E H, Kang M, Wang G and Kim T W 2019 ACS Appl. Mater. Interfaces 11 1071
[47] Takagi H 2000 Neurosci. Res. 37 167
[48] Fioravante D and Regehr W G 2011 Curr. Opin. Neurobiol. 21 269
[49] Jackman S L, Turecek J, Belinsky J E and Regehr W G 2016 Nature 529 88
[50] Debanne D, Guérineau N C, Gähwiler B H and Thompson S M 1996 J. Physiol. 491 163
[51] Sullivan J M 2007 J. Neurophysiol. 97 948
[52] Waldeck R F, Pereda A and Faber D S 2000 J. Neurosci. 20 5312
[53] Thompson R 1986 Science 233 941
[54] Ling H, Wang N, Yang A, Liu Y, Song J and Yan F 2019 Adv. Mater. Technol. 4 1900471
[55] Bear M F and Abraham W C 1996 Annu. Rev. Neurosci. 19 437
[56] Kullmann D M and Lamsa K P 2007 Nat. Rev. Neurosci. 8 687
[57] Bear M F and Malenka R C 1994 Curr. Opin. Neurobiol. 4 389
[58] Bliss T V P and Collingridge G L 1993 Nature 361 31
[59] Bi G Q and Poo M M 2001 Annu. Rev. Neurosci. 24 139
[60] Feldman Daniel E 2012 Neuron 75 556
[61] Song S and Abbott L F 2001 Neuron 32 339
[62] Wang Z, Joshi S, Savel'ev S E, Jiang H, Midya R, Lin P, Hu M, Ge N, Strachan J P, Li Z, Wu Q, Barnell M, Li G L, Xin H L, Williams R S, Xia Q and Yang J J 2017 Nat. Mater. 16 101
[63] Kent A D and Worledge D C 2015 Nat. Nanotechnol. 10 187
[64] Xia Q, Robinett W, Cumbie M W, Banerjee N, Cardinali T J, Yang J J, Wu W, Li X, Tong W M, Strukov D B, Snider G S, Medeiros-Ribeiro G and Williams R S 2009 Nano Lett. 9 3640
[65] Ge C, Li G, Zhou Q L, Du J Y, Guo E J, He M, Wang C, Yang G Z and Jin K J 2020 Nano Energy 67 104268
[66] Yao Y, Huang X, Peng S, Zhang D, Shi J, Yu G, Liu Q and Jin Z 2019 Adv. Electron. Mater. 5 1800887
[67] Oh C, Jo M and Son J 2019 ACS Appl. Mater. Interfaces 11 15733
[68] Jiang J, Guo J, Wan X, Yang Y, Xie H, Niu D, Yang J, He J, Gao Y and Wan Q 2017 Small 13 1700933
[69] Yang Y, Wen J, Guo L, Wan X, Du P, Feng P, Shi Y and Wan Q 2016 ACS Appl. Mater. Interfaces 8 30281
[70] Yang C S, Shang D S, Liu N, Shi G, Shen X, Yu R C, Li Y Q and Sun Y 2017 Adv. Mater. 29 1700906
[71] Zhu J, Yang Y, Jia R, Liang Z, Zhu W, Rehman Z U, Bao L, Zhang X, Cai Y, Song L and Huang R 2018 Adv. Mater. 30 1800195
[72] Sharbati M T, Du Y, Torres J, Ardolino N D, Yun M and Xiong F 2018 Adv. Mater. 30 1802353
[73] Fuller E J, Gabaly F E, Léonard F, Agarwal S, Plimpton S J, Jacobs-Gedrim R B, James C D, Marinella M J and Talin A A 2017 Adv. Mater. 29 1604310
[74] Shi J, Ha S D, Zhou Y, Schoofs F and Ramanathan S 2013 Nat. Commun. 4 2676
[75] Ge C, Liu C X, Zhou Q L, Zhang Q H, Du J Y, Li J K, Wang C, Gu L, Yang G Z and Jin K J 2019 Adv. Mater. 31 1900379
[76] Huang H Y, Ge C, Zhang Q H, Liu C X, Du J Y, Li J K, Wang C, Gu L, Yang G Z and Jin K J 2019 Adv. Funct. Mater. 29 1902702
[77] Ge C, Jin K J, Gu L, Peng L C, Hu Y S, Guo H Z, Shi H F, Li J K, Wang J O, Guo X X, Wang C, He M, Lu H B and Yang G Z 2015 Adv. Mater. Interfaces 2 1500407
[78] Yang J T, Ge C, Du J Y, Huang H Y, He M, Wang C, Lu H B, Yang G Z and Jin K J 2018 Adv. Mater. 30 1801548
[79] Jin K J, Lu H B, Zhou Q L, Zhao K, Cheng B L, Chen Z H, Zhou Y L and Yang G Z 2005 Phys. Rev. B 71 184428
[80] Jin K J, Lu H B, Zhao K, Ge C, He M and Yang G Z 2009 Adv. Mater. 21 4636
[81] van de Burgt Y, Lubberman E, Fuller E J, Keene S T, Faria G C, Agarwal S, Marinella M J, Alec Talin A and Salleo A 2017 Nat. Mater. 16 414
[82] Wu G, Feng P, Wan X, Zhu L, Shi Y and Wan Q 2016 Sci. Rep. 6 23578
[83] Liu Y H, Zhu L Q, Feng P, Shi Y and Wan Q 2015 Adv. Mater. 27 5599
[84] Lai Q, Zhang L, Li Z, Stickle W F, Williams R S and Chen Y 2010 Adv. Mater. 22 2448
[85] Lu N, Zhang P, Zhang Q, Qiao R, He Q, Li H B, Wang Y, Guo J, Zhang D, Duan Z, Li Z, Wang M, Yang S, Yan M, Arenholz E, Zhou S, Yang W, Gu L, Nan C W, Wu J, Tokura Y and Yu P 2017 Nature 546 124
[86] Go J, Kim Y, Kwak M, Song J, Chekol S A, Kwon J D and Hwang H 2019 Appl. Phys. Express 12 026503
[87] Li J, Li N, Ge C, Huang H, Sun Y, Gao P, He M, Wang C, Yang G and Jin K 2019 IScience 16 368
[88] Li J, Ge C, Du J, Wang C, Yang G and Jin K 2020 Adv. Mater. 32 1905764
[89] Oh S, Hwang H and Yoo I K 2019 APL Mater. 7 091109
[90] Kim M K and Lee J S 2019 Nano Lett. 19 2044
[91] Nishitani Y, Kaneko Y, Ueda M, Fujii E and Tsujimura A 2013 Jpn. J. Appl. Phys. 52 04CE06
[92] Hoffman J, Pan X, Reiner J W, Walker F J, Han J P, Ahn C H and Ma T P 2010 Adv. Mater. 22 2957
[93] Naber R C G, Asadi K, Blom P W M, de Leeuw D M and de Boer B 2010 Adv. Mater. 22 933
[94] Miller S L and McWhorter P J 1992 J. Appl. Phys. 72 5999
[95] Tian B, Liu L, Yan M, Wang J, Zhao Q, Zhong N, Xiang P, Sun L, Peng H, Shen H, Lin T, Dkhil B, Meng X, Chu J, Tang X and Duan C 2019 Adv. Electron. Mater. 5 1800600
[96] Li E, Wu X, Lan S, Yang Q, Fang Y, Chen H and Guo T 2019 J. Mater. Chem. C 7 998
[97] Chen Y, Zhou Y, Zhuge F, Tian B, Yan M, Li Y, He Y and Miao X S 2019 npj 2D Mater. Appl. 3 31
[98] Xu T, Xiang L, Xu M, Xie W and Wang W 2017 Sci. Rep. 7 8890
[99] Oh S, Kim T, Kwak M, Song J, Woo J, Jeon S, Yoo I K and Hwang H 2017 IEEE Electron Device Lett. 38 732
[100] Böscke T S, Müller J, Bräuhaus D, Schröder U and Böttger U 2011 Appl. Phys. Lett. 99 102903
[101] Yin W J, Wei S H, Al-Jassim M M and Yan Y 2011 Appl. Phys. Lett. 99 142109
[102] Starschich S, Griesche D, Schneller T, Waser R and Böttger U 2014 Appl. Phys. Lett. 104 202903
[103] Mueller S, Mueller J, Singh A, Riedel S, Sundqvist J, Schroeder U and Mikolajick T 2012 Adv. Funct. Mater. 22 2412
[104] Kim S J, Mohan J, Lee J, Lee J S, Lucero A T, Young C D, Colombo L, Summerfelt S R, San T and Kim J 2018 Appl. Phys. Lett. 112 172902
[105] Kim S J, Narayan D, Lee J G, Mohan J, Lee J S, Lee J, Kim H S, Byun Y C, Lucero A T, Young C D, Summerfelt S R, San T, Colombo L and Kim J 2017 Appl. Phys. Lett. 111 242901
[106] Jerry M, Chen P, Zhang J, Sharma P, Ni K, Yu S and Datta S 2017 IEEE Int. Electron. Devices Meeting (IEDM), December 2-6, 2017, San Francisco, USA, p. 6.2.1
[107] Yu S 2018 Proc. IEEE 106 260
[108] Wan C, Chen G, Fu Y, Wang M, Matsuhisa N, Pan S, Pan L, Yang H, Wan Q, Zhu L and Chen X 2018 Adv. Mater. 30 1801291
[109] Lee Y, Oh J Y, Xu W, Kim O, Kim T R, Kang J, Kim Y, Son D, Tok J B H, Park M J, Bao Z and Lee T W 2018 Sci. Adv. 4 eaat7387
[110] Kim Y, Chortos A, Xu W, Liu Y, Oh J Y, Son D, Kang J, Foudeh A M, Zhu C, Lee Y, Niu S, Liu J, Pfattner R, Bao Z and Lee T W 2018 Science 360 998
[111] He Y, Nie S, Liu R, Jiang S, Shi Y and Wan Q 2019 Adv. Mater. 31 1900903
[112] John R A, Liu F, Chien N A, Kulkarni M R, Zhu C, Fu Q, Basu A, Liu Z and Mathews N 2018 Adv. Mater. 30 1800220
[113] Qin S, Wang F, Liu Y, Wan Q, Wang X, Xu Y, Shi Y, Wang X and Zhang R 2017 2D Mater. 4 035022
[114] Zang Y, Zhang F, Huang D, Gao X, Di C A and Zhu D 2015 Nat. Commun. 6 6269
[115] Yu J J, Liang L Y, Hu L X, Duan H X, Wu W H, Zhang H L, Gao J H, Zhuge F, Chang T C and Cao H T 2019 Nano Energy 62 772
[116] Herman M A, Trimbuch T and Rosenmund C 2018 Front. Synaptic Neurosci. 10
[117] Nie S, He Y, Liu R, Shi Y and Wan Q 2019 IEEE Electron Device Lett. 40 459
[118] Wan C J, Zhu L Q, Liu Y H, Feng P, Liu Z P, Cao H L, Xiao P, Shi Y and Wan Q 2016 Adv. Mater. 28 3557
[1] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[2] Artificial synaptic behavior of the SBT-memristor
Gang Dou(窦刚), Ming-Long Dou(窦明龙), Ren-Yuan Liu(刘任远), and Mei Guo(郭梅). Chin. Phys. B, 2021, 30(7): 078401.
[3] Synaptic plasticity and classical conditioning mimicked in single indium-tungsten-oxide based neuromorphic transistor
Rui Liu(刘锐), Yongli He(何勇礼), Shanshan Jiang(姜珊珊), Li Zhu(朱力), Chunsheng Chen(陈春生), Ying Zhu(祝影), and Qing Wan(万青). Chin. Phys. B, 2021, 30(5): 058102.
[4] Implementation of synaptic learning rules by TaOx memristors embedded with silver nanoparticles
Yue Ning(宁玥), Yunfeng Lai(赖云锋), Jiandong Wan(万建栋), Shuying Cheng(程树英), Qiao Zheng(郑巧), and Jinling Yu(俞金玲). Chin. Phys. B, 2021, 30(4): 047301.
[5] A synaptic transistor with NdNiO3
Xiang Wang(汪翔), Chen Ge(葛琛), Ge Li(李格), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(9): 098101.
[6] An artificial synapse by superlattice-like phase-change material for low-power brain-inspired computing
Qing Hu(胡庆), Boyi Dong(董博义), Lun Wang(王伦), Enming Huang(黄恩铭), Hao Tong(童浩), Yuhui He(何毓辉), Ming Xu(徐明), Xiangshui Miao(缪向水). Chin. Phys. B, 2020, 29(7): 070701.
[7] Recent progress in optoelectronic neuromorphic devices
Yan-Bo Guo(郭延博), Li-Qiang Zhu(竺立强). Chin. Phys. B, 2020, 29(7): 078502.
[8] Electronic synapses based on ultrathin quasi-two-dimensional gallium oxide memristor
Shuopei Wang(王硕培), Congli He(何聪丽), Jian Tang(汤建), Rong Yang(杨蓉), Dongxia Shi(时东霞), Guangyu Zhang(张广宇). Chin. Phys. B, 2019, 28(1): 017304.
No Suggested Reading articles found!