Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 010302    DOI: 10.1088/1674-1056/25/1/010302
GENERAL Prev   Next  

Spin dynamics of the potassium magnetometer in spin-exchange relaxation free regime

Ji-Qing Fu(伏吉庆)1, Peng-Cheng Du(杜鹏程)2, Qing Zhou(周庆)2, Ru-Quan Wang(王如泉)1
1. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2. School of Physical Science and Technology, Yunnan University, Kunming 650091, China
Abstract  

The laser-pumped potassium spin-exchange relaxation free (SERF) magnetometer is the most sensitive detector of magnetic field and has many important applications. We present the experimental results of our potassium SERF magnetometer. A pump-probe approach is used to identify the unique spin dynamics of the atomic ensemble in the SERF regime. A single channel sensitivity of 8 f· THz-1/2 is achieved with our SERF magnetometer.

Keywords:  Larmor process      spin-exchange relaxation free magnetometer      atomic magnetometer  
Received:  19 October 2015      Revised:  05 November 2015      Accepted manuscript online: 
PACS:  03.65.Sq (Semiclassical theories and applications)  
  32.30.Dx (Magnetic resonance spectra)  
  32.50.+d (Fluorescence, phosphorescence (including quenching))  
  33.57.+c (Magneto-optical and electro-optical spectra and effects)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61227902).

Corresponding Authors:  Ru-Quan Wang     E-mail:  ruquanwang@aphy.iphy.ac.cn

Cite this article: 

Ji-Qing Fu(伏吉庆), Peng-Cheng Du(杜鹏程), Qing Zhou(周庆), Ru-Quan Wang(王如泉) Spin dynamics of the potassium magnetometer in spin-exchange relaxation free regime 2016 Chin. Phys. B 25 010302

[1] Kastler A 1950 J. Phys. Radium. 11 255
[2] Dehmelt H 1957 Phys. Rev. 105 1924
[3] Bell W and Bloom A 1957 Phys. Rev. 107 1559
[4] Budker D, Gawlik W, Kimball D F, Rochester S M, Yashchuk V V and Weis A 2002 Rev. Mod. Phys. 74 1153
[5] Li S G, Xu Y F, Wang Z Y, Liu Y X and Lin Q 2009 Chin. Phys. Lett. 26 067805
[6] Edward R 2006 Hall-effect Sensors: Theory and Applications (New York: Elsevier)
[7] Hirota E, Sakakima H and Inomata K 2002 Giant Magneto-Resistance Devices (Berlin: Springer) p. 23
[8] Liew L, Knappe S, Moreland J, Robinson H, Hollberg L and Kitching J 2004 Appl. Phys. Lett. 84 2694
[9] Kominis I K, Kornack T W, Allred J C and Romalis M V 2003 Nature 422 596
[10] Budker D and Romalis M V 2007 Nat. Phys. 3 227
[11] Dang H B, Maloof A C and Romalis M V 2010 Appl. Phys. Lett. 97 151110
[12] Allred J C, Lyman R N, Kornack T W and Romalis M V 2002 Phys. Rev. Lett. 89 130801
[13] Clarke J and Braginski A I 2004 The SQUID Handbok (New York: Wiley-VCH, Weinheim)
[14] Lee H J, Shim J H, Moon H S and Kim K 2014 Opt. Express 22 17
[15] Fang J C, Wan S G, Qin J, Zhang C and Quan W 2014 J. Opt. Soc. Am. B 31 3
[16] Wyllie R, Kauer M, Smetana G S, Wakai R T and Gwalker T 2012 Phys. Med. Biol. 57 2619
[17] Romalis M V 2010 Phys. Rev. Lett. 105 243001
[18] Yosuke I, Hiroyuki O, Keigo K and Tetsuo K 2012 AIP Adv. 2 032127
[19] Fang J C, Wang T, Zhang H, Li Y and Zou S 2014 Rev. Sci. Inst. 85 123104
[20] Griffith W C, Knappe S and Kitching J 2010 Opt. Express 18 26
[21] Kornack T W, Vasilakis G and Romalis M V 2008 CPT and Lorentz Symmetry IV pp. 206-213
[22] Billings S, Shubitidze F, Pasion L, Beran L and Foley J 2010 Requirements for Unexploded Ordnance Detection and Discrimination in the Marine Environment Using Magnetic and Electromagnetic Sensors (Proceedings of OCEANS, IEEE-Sidney) p. 18
[23] Xia H, Baranga A B, Hoffman D and Romails M V 2006 Appl. Phys. Lett. 89 211104
[24] Bison G, Wynands R and Weis A 2003 Appl. Phys. B 76 325
[25] Happer W and Tang H 1973 Phys. Rev. Lett. 31 273
[26] Happer W and Tam A C 1977 Phys. Rev. A 16 1877
[27] Bloch F 1946 Phys. Rev. 70 460
[28] Appelt S, Ben-Amar B A, Erickson C J, Romalis M V, Young A R and Happer W 1998 Phys. Rev. A 58 1412
[29] Budker D and Kimball D F 2013 Optical Magnetometry (New York: Cambridge University Press)
[30] Gusarov A, Levron D, Baranga A B, Paperno E and Shuker R 2011 J. Appl. Phys. 109 07E507
[31] Erickson C J, Levron D, Happer W, Kadlecek S, Chann B, Anderson L W and Walker T G 2000 Phys. Rev. Lett. 85 4237
[32] Kadlecek S, Anderson L W and Walker T G 1998 Phys. Rev. Lett. 80 5512
[1] A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography
Qing-Qian Guo(郭清乾), Tao Hu(胡涛), Xiao-Yu Feng(冯晓宇), Ming-Kang Zhang(张明康), Chun-Qiao Chen(陈春巧), Xin Zhang(张欣), Ze-Kun Yao(姚泽坤), Jia-Yu Xu(徐佳玉),Qing Wang(王青), Fang-Yue Fu(付方跃), Yin Zhang(张寅), Yan Chang(常严), and Xiao-Dong Yang(杨晓冬). Chin. Phys. B, 2023, 32(4): 040702.
[2] Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
Kai-Feng Yin(尹凯峰), Ji-Xi Lu(陆吉玺), Fei Lu(逯斐), Bo Li(李博), Bin-Quan Zhou(周斌权), and Mao Ye(叶茂). Chin. Phys. B, 2022, 31(11): 110703.
[3] Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes
Si-Yuan Hao(郝思源), Xiao-Ping Lou(娄小平), Jing Zhu(祝静), Guang-Wei Chen(陈广伟), and Hui-Yu Li(李慧宇). Chin. Phys. B, 2021, 30(6): 060702.
[4] Search for topological defect of axionlike model with cesium atomic comagnetometer
Yucheng Yang(杨雨成), Teng Wu(吴腾), Jianwei Zhang(张建玮), and Hong Guo(郭弘). Chin. Phys. B, 2021, 30(5): 050704.
[5] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[6] Atomic magnetometer with microfabricated vapor cells based on coherent population trapping
Xiaojie Li(李晓杰), Yue Shi(史越), Hongbo Xue(薛洪波), Yong Ruan(阮勇), and Yanying Feng(冯焱颖). Chin. Phys. B, 2021, 30(3): 030701.
[7] Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography
Jian-Jun Li(李建军), Peng-Cheng Du(杜鹏程), Ji-Qing Fu(伏吉庆), Xu-Tong Wang(王旭桐), Qing Zhou(周庆), Ru-Quan Wang(王如泉). Chin. Phys. B, 2019, 28(4): 040703.
[8] Influence of pump intensity on atomic spin relaxation in a vapor cell
Chen Yang(杨晨), Guan-Hua Zuo(左冠华), Zhuang-Zhuang Tian(田壮壮), Yu-Chi Zhang(张玉驰), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(11): 117601.
[9] Combined effect of light intensity and temperature on the magnetic resonance linewidth in alkali vapor cell with buffer gas
Yang Gao(高阳), Hai-Feng Dong(董海峰), Xiang Wang(王翔), Xiao-Fei Wang(王笑菲), Ling-Xiao Yin(尹凌霄). Chin. Phys. B, 2017, 26(6): 067801.
[10] Spin dynamics of magnetic resonance with parametric modulation in a potassium vapor cell
Rui Zhang(张锐), Zhi-Guo Wang(汪之国), Xiang Peng(彭翔), Wen-Hao Li(黎文浩), Song-Jian Li(李松健), Hong Guo(郭弘). Chin. Phys. B, 2017, 26(3): 030701.
[11] Coherent population trapping magnetometer by differential detecting magneto-optic rotation effect
Fan Zhang(张樊), Yuan Tian(田原), Yi Zhang(张奕), Si-Hong Gu(顾思洪). Chin. Phys. B, 2016, 25(9): 094206.
[12] In-situ measurement of magnetic field gradient in a magnetic shield by a spin-exchange relaxation-free magnetometer
Fang Jian-Cheng (房建成), Wang Tao (王涛), Zhang Hong (张红), Li Yang (李阳), Cai Hong-Wei (蔡洪炜). Chin. Phys. B, 2015, 24(6): 060702.
[13] Measurement of 129Xe frequency shift due to Cs-129Xe collisions
Fang Jian-Cheng (房建成), Wan Shuang-Ai (万双爱), Chen Yao (陈瑶). Chin. Phys. B, 2014, 23(6): 063401.
[14] High contrast atomic magnetometer based on coherent population trapping
Yang Ai-Lin (杨爱林), Yang Guo-Qing (杨国卿), Xu Yun-Fei (徐云飞), Lin Qiang (林强). Chin. Phys. B, 2014, 23(2): 027601.
[15] A laser pump-re-pump atomic magnetometer
Yang Ai-Lin (杨爱林), Yang Guo-Qing (杨国卿), Cai Xun-Ming (蔡勋明), Xu Yun-Fei (徐云飞), Lin Qiang (林强). Chin. Phys. B, 2013, 22(12): 120702.
No Suggested Reading articles found!