Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 067801    DOI: 10.1088/1674-1056/26/6/077801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Combined effect of light intensity and temperature on the magnetic resonance linewidth in alkali vapor cell with buffer gas

Yang Gao(高阳)1, Hai-Feng Dong(董海峰)1, Xiang Wang(王翔)2, Xiao-Fei Wang(王笑菲)1, Ling-Xiao Yin(尹凌霄)1
1 School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing 100191, China;
2 School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
Abstract  

One of the peculiar phenomenons in non-zero magnetic resonance magnetometer is that, with the increase of the temperature, the magnetic resonance linewidth is narrowed at first instead of broadened due to the increasing collision rate. The magnetometer usually operates at the narrowest linewidth temperature to obtain the best sensitivity. Here, we explain this phenomenon quantitatively considering the nonlinear of the optical pumping in the cell and did experiments to verify this explanation. The magnetic resonance linewidth is measured using one amplitude-modulated pump laser and one continuous probe laser. The field is along the direction orthogonal to the plane of pump and probe beams. We change the temperature from 53℃ to 93℃ and the pumping light from 0.1 mW to 2 mW. The experimental results agree well with the theoretical calculations.

Keywords:  atomic magnetometer      magnetic resonance      linewidth      temperature  
Received:  11 February 2017      Revised:  29 March 2017      Accepted manuscript online: 
PACS:  78.20.Ls (Magneto-optical effects)  
  85.70.Sq (Magnetooptical devices)  
  33.57.+c (Magneto-optical and electro-optical spectra and effects)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51675034 and 61273067) and Beijing Natural Science Foundation (Grant No. 7172123).

Corresponding Authors:  Hai-Feng Dong     E-mail:  hfdong@buaa.edu.cn

Cite this article: 

Yang Gao(高阳), Hai-Feng Dong(董海峰), Xiang Wang(王翔), Xiao-Fei Wang(王笑菲), Ling-Xiao Yin(尹凌霄) Combined effect of light intensity and temperature on the magnetic resonance linewidth in alkali vapor cell with buffer gas 2017 Chin. Phys. B 26 067801

[1] Rabi I I, Zacharias J R, Millman S and Kusch P 1938 Phys. Rev. 53 318
[2] Zavoisky E 1945 J. Phys. USSR 9 211
[3] Kastler A 1950 J. Phys. Radium 11 255
[4] Kastler A 1957 J. Opt. Soc. Am. 47 460
[5] Huang H C, Dong H F, Hao H J and Hu X Y 2015 Chin. Phys. Lett. 32 098503
[6] Wang M L, Wang M B, Zhang G Y and Zhao K F 2016 Chin. Phys. B 25 060701
[7] Xu C, Wang S G, Feng Y Y, Zhao L and Wang L J 2016 Sci. Rep. 6 28169
[8] Groeger S, Bison G, Schenker J L, Wynands R and Weis A 2006 Eur. Phys. J. D 38 239
[9] Schwindt P D D, Lindseth B, Knappe S, Shah V, Kitching J and Liew L A 2007 Appl. Phys. Lett. 90 081102
[10] Ding Z C, Yuan J, Wang Z G, Yang K Y and Luo H 2015 Chin. Phys. B 24 083202
[11] Yang A L, Yang G Q, Cai X M, Xu Y F and Lin Q 2013 Chin. Phys. B 22 120702
[12] Shi R Y and Wang Y H 2013 Chin. Phys. B 22 100703
[13] Yang A L, Yang G Q, Xu Y F and Lin Q 2014 Chin. Phys. B 23 027601
[14] Zhang F, Tian Y, Zhang Y and Gu S H 2016 Chin. Phys. B 25 094206
[15] Allred J C, Lyman R N, Kornack T W and Romalis M V 2002 Phys. Rev. Lett. 89 130801
[16] Li Z, Wakai R T and Walker T G 2006 Appl. Phys. Lett. 89 134105
[17] Dong H F, Fang J C, Zhou B Q, Tang X B and Qin J 2012 Eur. Phys. J. Appl. Phys. 57 21004
[18] Fu J Q, Du P C, Zhou Q and Wang R Q 2016 Chin. Phys. B 25 010302
[19] Walker T G and Happer W 1997 Rev. Mod. Phys. 69 629
[20] Mies F H, Williams C J, Julienne P S and Morris K 1996 J. Res. NIST 101 521
[21] Budker D, Valeriy Y and Max Z 1998 Phys. Rev. Lett. 81 5788
[22] Budker D and Kimball D F J 2013 Optical Magnetometry (New York: Cambridge University Press)
[23] Happer W, Jau Y Y and Walker T G 2010 Optically Pumped Atoms
[24] Freitas H N De, Oria M and Chevrollier M 2002 Appl. Phys. B 75 703
[25] Seltzer S J, Michalak D J and Donaldson M H, et al. 2010 J. Chem. Phys. 133 144703
[26] Seltzer S J and Romalis M V 2009 J. Appl. Phys. 106 114905
[27] Zhang G Y, Wei L H, Wang M L and Zhao K F 2015 J. Appl. Phys. 117 043106
[28] Liao K J, Wang M L, Zhang G Y and Zhao K F 2015 Chin. Phys. Lett. 32 076801
[29] Balabas M V, Karaulanov T, Ledbetter M P and Budker D 2010 Phys. Rev. Lett. 105 070801
[30] Shah V, Knappe S, Schwindt P D D and Kitching J 2007 Nat. Photon. 1 649
[31] Vershovskii A K and Pazgalev A S 2008 Technical Phys. 53 646
[32] Li S G, Xu Y F, Wang Z Y, Liu Y X and Lin Q 2009 Chin. Phys. Lett. 26 276
[33] Wang T, Kimball D F J, Sushkov A O, Aybas D, Blanchard J W, Centers G, Kelley S R O', Fang J C and Budker D 2017 arXiv: 1701.08082v2
[34] Kornack T W 2005 "A Test of CPT and Lorentz Symmetry Using a K-3He Co-magnetometer," Ph. D. Dissertation (Princeton University)
[35] Alcock C B, Itkin V P and Horrigan M K 1984 Can. Metall. Quart. 3 309
[36] Seltzer S J and Romalis M V 2004 Appl. Phys. Lett. 85 4804
[37] Ressler N W, Sands R H and Stark T E 1969 Phys. Rev. 184 102
[38] Happer W and Tam A C 1977 Phys. Rev. A 16 1877
[39] Seltzer S J 2008 "Developments in Alkali-Metal Atomic Magnetometry", Ph. D. Dissertation) (Princeton University)
[1] A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography
Qing-Qian Guo(郭清乾), Tao Hu(胡涛), Xiao-Yu Feng(冯晓宇), Ming-Kang Zhang(张明康), Chun-Qiao Chen(陈春巧), Xin Zhang(张欣), Ze-Kun Yao(姚泽坤), Jia-Yu Xu(徐佳玉),Qing Wang(王青), Fang-Yue Fu(付方跃), Yin Zhang(张寅), Yan Chang(常严), and Xiao-Dong Yang(杨晓冬). Chin. Phys. B, 2023, 32(4): 040702.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[4] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[5] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[6] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[7] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[8] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[9] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
[10] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[11] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[12] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[13] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[14] Synthesis of hexagonal boron nitride films by dual temperature zone low-pressure chemical vapor deposition
Zhi-Fu Zhu(朱志甫), Shao-Tang Wang(王少堂), Ji-Jun Zou(邹继军), He Huang(黄河), Zhi-Jia Sun(孙志嘉), Qing-Lei Xiu(修青磊), Zhong-Ming Zhang(张忠铭), Xiu-Ping Yue(岳秀萍), Yang Zhang(张洋), Jin-Hui Qu(瞿金辉), and Yong Gan(甘勇). Chin. Phys. B, 2022, 31(8): 086103.
[15] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
No Suggested Reading articles found!