CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Combined effect of light intensity and temperature on the magnetic resonance linewidth in alkali vapor cell with buffer gas |
Yang Gao(高阳)1, Hai-Feng Dong(董海峰)1, Xiang Wang(王翔)2, Xiao-Fei Wang(王笑菲)1, Ling-Xiao Yin(尹凌霄)1 |
1 School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing 100191, China;
2 School of Electronic and Information Engineering, Beihang University, Beijing 100191, China |
|
|
Abstract One of the peculiar phenomenons in non-zero magnetic resonance magnetometer is that, with the increase of the temperature, the magnetic resonance linewidth is narrowed at first instead of broadened due to the increasing collision rate. The magnetometer usually operates at the narrowest linewidth temperature to obtain the best sensitivity. Here, we explain this phenomenon quantitatively considering the nonlinear of the optical pumping in the cell and did experiments to verify this explanation. The magnetic resonance linewidth is measured using one amplitude-modulated pump laser and one continuous probe laser. The field is along the direction orthogonal to the plane of pump and probe beams. We change the temperature from 53℃ to 93℃ and the pumping light from 0.1 mW to 2 mW. The experimental results agree well with the theoretical calculations.
|
Received: 11 February 2017
Revised: 29 March 2017
Accepted manuscript online:
|
PACS:
|
78.20.Ls
|
(Magneto-optical effects)
|
|
85.70.Sq
|
(Magnetooptical devices)
|
|
33.57.+c
|
(Magneto-optical and electro-optical spectra and effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51675034 and 61273067) and Beijing Natural Science Foundation (Grant No. 7172123). |
Corresponding Authors:
Hai-Feng Dong
E-mail: hfdong@buaa.edu.cn
|
Cite this article:
Yang Gao(高阳), Hai-Feng Dong(董海峰), Xiang Wang(王翔), Xiao-Fei Wang(王笑菲), Ling-Xiao Yin(尹凌霄) Combined effect of light intensity and temperature on the magnetic resonance linewidth in alkali vapor cell with buffer gas 2017 Chin. Phys. B 26 067801
|
[1] |
Rabi I I, Zacharias J R, Millman S and Kusch P 1938 Phys. Rev. 53 318
|
[2] |
Zavoisky E 1945 J. Phys. USSR 9 211
|
[3] |
Kastler A 1950 J. Phys. Radium 11 255
|
[4] |
Kastler A 1957 J. Opt. Soc. Am. 47 460
|
[5] |
Huang H C, Dong H F, Hao H J and Hu X Y 2015 Chin. Phys. Lett. 32 098503
|
[6] |
Wang M L, Wang M B, Zhang G Y and Zhao K F 2016 Chin. Phys. B 25 060701
|
[7] |
Xu C, Wang S G, Feng Y Y, Zhao L and Wang L J 2016 Sci. Rep. 6 28169
|
[8] |
Groeger S, Bison G, Schenker J L, Wynands R and Weis A 2006 Eur. Phys. J. D 38 239
|
[9] |
Schwindt P D D, Lindseth B, Knappe S, Shah V, Kitching J and Liew L A 2007 Appl. Phys. Lett. 90 081102
|
[10] |
Ding Z C, Yuan J, Wang Z G, Yang K Y and Luo H 2015 Chin. Phys. B 24 083202
|
[11] |
Yang A L, Yang G Q, Cai X M, Xu Y F and Lin Q 2013 Chin. Phys. B 22 120702
|
[12] |
Shi R Y and Wang Y H 2013 Chin. Phys. B 22 100703
|
[13] |
Yang A L, Yang G Q, Xu Y F and Lin Q 2014 Chin. Phys. B 23 027601
|
[14] |
Zhang F, Tian Y, Zhang Y and Gu S H 2016 Chin. Phys. B 25 094206
|
[15] |
Allred J C, Lyman R N, Kornack T W and Romalis M V 2002 Phys. Rev. Lett. 89 130801
|
[16] |
Li Z, Wakai R T and Walker T G 2006 Appl. Phys. Lett. 89 134105
|
[17] |
Dong H F, Fang J C, Zhou B Q, Tang X B and Qin J 2012 Eur. Phys. J. Appl. Phys. 57 21004
|
[18] |
Fu J Q, Du P C, Zhou Q and Wang R Q 2016 Chin. Phys. B 25 010302
|
[19] |
Walker T G and Happer W 1997 Rev. Mod. Phys. 69 629
|
[20] |
Mies F H, Williams C J, Julienne P S and Morris K 1996 J. Res. NIST 101 521
|
[21] |
Budker D, Valeriy Y and Max Z 1998 Phys. Rev. Lett. 81 5788
|
[22] |
Budker D and Kimball D F J 2013 Optical Magnetometry (New York: Cambridge University Press)
|
[23] |
Happer W, Jau Y Y and Walker T G 2010 Optically Pumped Atoms
|
[24] |
Freitas H N De, Oria M and Chevrollier M 2002 Appl. Phys. B 75 703
|
[25] |
Seltzer S J, Michalak D J and Donaldson M H, et al. 2010 J. Chem. Phys. 133 144703
|
[26] |
Seltzer S J and Romalis M V 2009 J. Appl. Phys. 106 114905
|
[27] |
Zhang G Y, Wei L H, Wang M L and Zhao K F 2015 J. Appl. Phys. 117 043106
|
[28] |
Liao K J, Wang M L, Zhang G Y and Zhao K F 2015 Chin. Phys. Lett. 32 076801
|
[29] |
Balabas M V, Karaulanov T, Ledbetter M P and Budker D 2010 Phys. Rev. Lett. 105 070801
|
[30] |
Shah V, Knappe S, Schwindt P D D and Kitching J 2007 Nat. Photon. 1 649
|
[31] |
Vershovskii A K and Pazgalev A S 2008 Technical Phys. 53 646
|
[32] |
Li S G, Xu Y F, Wang Z Y, Liu Y X and Lin Q 2009 Chin. Phys. Lett. 26 276
|
[33] |
Wang T, Kimball D F J, Sushkov A O, Aybas D, Blanchard J W, Centers G, Kelley S R O', Fang J C and Budker D 2017 arXiv: 1701.08082v2
|
[34] |
Kornack T W 2005 "A Test of CPT and Lorentz Symmetry Using a K-3He Co-magnetometer," Ph. D. Dissertation (Princeton University)
|
[35] |
Alcock C B, Itkin V P and Horrigan M K 1984 Can. Metall. Quart. 3 309
|
[36] |
Seltzer S J and Romalis M V 2004 Appl. Phys. Lett. 85 4804
|
[37] |
Ressler N W, Sands R H and Stark T E 1969 Phys. Rev. 184 102
|
[38] |
Happer W and Tam A C 1977 Phys. Rev. A 16 1877
|
[39] |
Seltzer S J 2008 "Developments in Alkali-Metal Atomic Magnetometry", Ph. D. Dissertation) (Princeton University)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|