|
|
Entanglement and non-Markovianity of a multi-level atom decaying in a cavity |
Zi-Long Fan(范子龙), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生) |
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, China |
|
|
Abstract We present a paradigmatic method for exactly studying non-Markovian dynamics of a multi-level V-type atom interacting with a zero-temperature bosonic bath. Special attention is paid to the entanglement evolution and the dynamical non-Markovianity of a three-level V-type atom. We find that the entanglement negativity decays faster and non-Markovianity is smaller in the resonance regions than those in the non-resonance regions. More importantly, the quantum interference between the dynamical non-Markovianities induced by different transition channels is manifested, and the frequency domains for constructive and destructive interferences are found.
|
Received: 23 July 2015
Revised: 16 September 2015
Accepted manuscript online:
|
PACS:
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11275064 and 11075050), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20124306110003), and the Construct Program of the National Key Discipline, China. |
Corresponding Authors:
Hao-Sheng Zeng
E-mail: hszeng@hunnu.edu.cn
|
Cite this article:
Zi-Long Fan(范子龙), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生) Entanglement and non-Markovianity of a multi-level atom decaying in a cavity 2016 Chin. Phys. B 25 010303
|
[1] |
Breuer H P and Petruccione F 2007 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
|
[2] |
Kubota Y and Nobusada K 2009 J. Phys. Soc. Jpn. 78 114603
|
[3] |
Ji Y H and Hu J J 2010 Chin. Phys. B 19 060304
|
[4] |
Shao J 2004 J. Chem. Phys. 120 5053
|
[5] |
Chin A W, Datta A, Caruso F, Huelga S F and Plenio M B 2010 New J. Phys. 12 065002
|
[6] |
Chin A W, Huelga S F and Plenio M B 2012 Phys. Rev. Lett. 109 233601
|
[7] |
Bylicka B, Chruściński D and Maniscalco S 2014 Sci. Rep. 4 5720
|
[8] |
Laine E M, Breuer H P and Piilo J 2014 Sci. Rep. 4 4620
|
[9] |
Vasile R, Olivares S, Paris M G A and Maniscalco S 2011 Phys. Rev. A 83 042321
|
[10] |
Tang N, Fan Z L and Zeng H S 2015 Quant. Inform. Comput. 15 0568
|
[11] |
Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
|
[12] |
Rivas Á, Huelga S F and Plenio M B 2010 Phys. Rev. Lett. 105 050403
|
[13] |
Lu X M, Wang X G and Sun C P 2010 Phys. Rev. A 82 042103
|
[14] |
Luo S, Fu S and Song H 2012 Phys. Rev. A 86 044101
|
[15] |
Hou S C, Liang S L and Yi X X 2015 Phys. Rev. A 91 012109
|
[16] |
Zeng H S, Tang N, Zheng Y P and Wang G Y 2011 Phys. Rev. A 84 032118
|
[17] |
Xu Z Y, Yang W L and Feng M 2010 Phys. Rev. A 81 044105
|
[18] |
Chruściński D and Wudarski F A 2015 Phys. Rev. A 91 012104
|
[19] |
Gu W J and Li G X 2012 Phys. Rev. A 85 014101
|
[20] |
Yin X, Ma J, Wang X and Nori F 2012 Phys. Rev. A 86 012308
|
[21] |
Mäkelä H 2015 Phys. Rev. A 91 012108
|
[22] |
Deffner S and Lutz E 2013 Phys. Rev. Lett. 111 010402
|
[23] |
Shen H Z, Qin M and Yi X X 2013 Phys. Rev. A 88 033835
|
[24] |
Zou C L, Chen X D, Xiong X, Sun F W, Zou X B, Han Z F and Guo G C 2013 Phys. Rev. A 88 063806
|
[25] |
He Z, Zou J, Li L and Shao B 2011 Phys. Rev. A 83 012108
|
[26] |
Zeng H S, Zheng Y P, Tang N and Wang G Y 2013 Quantum Inf. Pro-cess 12 1637
|
[27] |
Xue S B, Wu R B, Zhang W M, Zhang J, Li C W and Tarn T J 2012 Phys. Rev. A 86 052304
|
[28] |
Tang N, Cheng W and Zeng H S 2014 Eur. Phys. J. D 68 278
|
[29] |
Zhang Y J, Yang X Q, Han W and Xia Y J 2013 Chin. Phys. B 22 090307
|
[30] |
Wang X Y, Ding B F and Zhao H P 2013 Chin. Phys. B 22 020309
|
[31] |
Wang X Y, Ding B F and Zhao H P 2013 Chin. Phys. B 22 040308
|
[32] |
Xue P and Zhang Y S 2013 Chin. Phys. B 22 070302
|
[33] |
Xie D and Wang A M 2014 Chin. Phys. B 23 040302
|
[34] |
Liu X and Wu W 2014 Chin. Phys. B 23 070303
|
[35] |
Fan Z L, Tian J and Zeng H S 2014 Chin. Phys. B 23 060303
|
[36] |
Wang G Y, Tang N, Liu Y and Zeng H S 2015 Chin. Phys. B 24 050302
|
[37] |
Liu Y, Cheng W, Gao Z Y and Zeng H S 2015 Opt. Express 23 23021
|
[38] |
Tian L J, Ti M M and Zhai X D 2015 Chin. Phys. B 24 100305
|
[39] |
Zou H M and Fang M F 2015 Chin. Phys. B 24 080304
|
[40] |
Liu B H, Li L, Huang Y F, Li C F, Guo G C, Laine E M, Breuer H P and Piilo J 2011 Nat. Phys. 7 931
|
[41] |
Tang J S, Li C F, Li Y L, Zou X B, Gou G C, Breuer H P, Laine E M and Piilo J 2012 Europhys. Lett. 97 10002
|
[42] |
Peres A 1996 Phys. Rev. Lett. 77 1413
|
[43] |
Horodečki P 1997 Phys. Lett. A 232 333
|
[44] |
Bruß D and Macchiavello C 2002 Phys. Rev. Lett. 88 127901
|
[45] |
Cerf N J, Bourennane M, Karlsson A and Gisin N 2002 Phys. Rev. Lett. 88 127902
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|