Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 040703    DOI: 10.1088/1674-1056/28/4/040703
GENERAL Prev   Next  

Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography

Jian-Jun Li(李建军)1,2, Peng-Cheng Du(杜鹏程)1,2, Ji-Qing Fu(伏吉庆)3, Xu-Tong Wang(王旭桐)1,4, Qing Zhou(周庆)4, Ru-Quan Wang(王如泉)1,2
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 National Institute of Metrology, Beijing 100029, China;
4 School of Physics and Astronomy, Yunnan University, Kunming 650091, China

A miniature quad-channel optically pumped atomic magnetometer (OPM) has been developed based on the spin-exchange relaxation-free (SERF) mechanism. With a vapor cell of size 8 mm×8 mm×8 mm, we have incorporated four SERF magnetometer channels, which provides sufficient spatial resolution for magnetoencephalography (MEG). The four channels share the same laser beam for the best cancellation of common mode noise due to laser fluctuations. With gradient measurement, the sensitivities of the four sensors are better than 6 fT/Hz1/2, which is also good enough for MEG measurement. The vapor cell is heated to 160℃ by a novel nonmagnetic current-heating structure. Our sensor with high spatial resolution and compact size is particularly suitable for MEG systems.

Keywords:  multi-channel      spin-exchange relaxation-free      optically pumped atomic magnetometer      magnetoencephalography  
Received:  07 January 2019      Revised:  23 February 2019      Accepted manuscript online: 
PACS:  07.55.Ge (Magnetometers for magnetic field measurements)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  44.10.+i (Heat conduction)  

Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0300600 and 2016YFA0301500), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07030000), and the National Natural Science Foundation of China (Grant No. 11474347).

Corresponding Authors:  Ru-Quan Wang     E-mail:

Cite this article: 

Jian-Jun Li(李建军), Peng-Cheng Du(杜鹏程), Ji-Qing Fu(伏吉庆), Xu-Tong Wang(王旭桐), Qing Zhou(周庆), Ru-Quan Wang(王如泉) Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography 2019 Chin. Phys. B 28 040703

[1] Fitzgerald R 2003 Phys. Today 56 21
[2] Foley C P, Tilbrook D L, Leslie K E, Binks R A, Donaldson G B, Du J, Lam S K, Schmidt P W and Clark D A 2001 IEEE Trans. Appl. Supercond. 11 1375
[3] Narkhov E D, Sapunov V A, Denisov A U and Savelyev D V 2014 Transactions on Ecology and the Environment, Vol. 186 (Southampton: WIT Press) p. 649
[4] Clem T R 1998 Nav. Eng. J. 110 139
[5] Hirota M, Nanaura K, Teranishi Y and Kishigami T 1997 IEEE Trans. Appl. Supercond. 7 2327
[6] Savukov I M and Romalis M V 2005 Phys. Rev. Lett. 94 123001
[7] Xu S, Yashchuk V V, Donaldson M H, Rochester S M, Budker D and Pines A 2006 Proc. Natl. Acad. Sci. USA 103 12668
[8] Boto E, Meyer S S, Shah V, Alem O, Knappe S, Kruger P, Fromhold T M, Lim M, Glover P M, Morris P G, Bowtell R, Barnes G R and Brookes M J 2017 Neuroimage 149 404
[9] Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer S S, Muñoz L D, Mullinger K J, Tierney T M, Bestmann S, Barnes G R, Bowtell R and Brookes M J 2018 Nature 555 657
[10] Sternickel K and Braginski A I 2006 Supercond. Sci. Technol. 19 S160
[11] Fagaly R L 2006 Rev. Sci. Instrum. 77 101101
[12] Budker D and Kimball D F J 2013 Optical Magnetometry (New York: Cambridge University Press) pp. 3-7
[13] Kominis I K, Kornack T W, Allred J C and Romalis M V 2003 Nature 422 596
[14] Happer W and Tang H 1973 Phys. Rev. Lett. 31 273
[15] Happer W and Tam A C 1977 Phys. Rev. A 16 1877
[16] Allred J C, Lyman R N, Kornack T W and Romalis M V 2002 Phys. Rev. Lett. 89 130801
[17] Dang H B, Maloof A C and Romalis M V 2010 Appl. Phys. Lett. 97 151110
[18] Knappe S, Sander T and Trahms L 2014 Magnetoencephalography, 2nd Edn. (New York: Springer) pp. 993-999
[19] Shah V, Vasilakis G and Romalis M V 2010 Phys. Rev. Lett. 104 013601
[20] Acosta V M, Bauch E, Ledbetter M P, Santori C, Fu K M, Barclay P E, Beausoleil R G, Linget H, Roch J F, Treussart F, Chemerisov S, Gawlik W and Budker D 2009 Phys. Rev. B 80 115202
[21] Zetter R, Iivanainen J, Stenroos M and Parkkonen L 2018 Brain Topogr. 31 931
[22] Wyllie R, Kauer M, Smetana G S, Wakai R T and Walker T G 2012 Phys. Med. Biol. 57 2619
[23] Li R J, Quan W, Fan W F, Xing L, Wang Z, Zhai Y Y and Fang J C 2017 Chin. Phys. B 26 120702
[24] Griffith W C, Knappe S and Kitching J 2010 Opt. Express 18 27167
[25] Mhaskar R, Knappe S and Kitching J 2012 Appl. Phys. Lett. 101 241105
[26] Johnson C N, Schwindt P D D and Weisend M 2013 Phys. Med. Biol. 58 6065
[27] Alem O, Sander T H, Mhaskar R, LeBlanc J, Eswaran H, Steinhoff U, Okada Y, Kitching J, Trahms L and Knappe S 2015 Phys. Med. Biol. 60 4797
[28] Sheng D, Perry A R, Krzyzewski S P, Geller S, Kitching J and Knappe S 2017 Appl. Phys. Lett. 110 3
[29] Colombo A P, Carter T R, Borna A, Jau Y Y, Johnson C N, Dagel A L and Schwindt P D 2016 Opt. Express 24 15403
[30] Singh S P 2014 Ann. Indian Acad. Neurol. 17 S107
[31] Seltzer S J and Romalis M V 2004 Appl. Phys. Lett. 85 4804
[32] Shah V and Romalis M V 2009 Phys. Rev. A 80 013416
[33] Cohen-Tannoudji C, DuPont-Roc J, Haroche S and Laloë F 1970 Rev. Phys. Appl. 5 95
[34] Rosenberry M A, Reyes J P, Tupa D and Gay T J 2007 Phys. Rev. A 75 023401
[35] Fu J Q, Du P C, Zhou Q and Wang R Q 2016 Chin. Phys. B 25 010302
[1] A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography
Qing-Qian Guo(郭清乾), Tao Hu(胡涛), Xiao-Yu Feng(冯晓宇), Ming-Kang Zhang(张明康), Chun-Qiao Chen(陈春巧), Xin Zhang(张欣), Ze-Kun Yao(姚泽坤), Jia-Yu Xu(徐佳玉),Qing Wang(王青), Fang-Yue Fu(付方跃), Yin Zhang(张寅), Yan Chang(常严), and Xiao-Dong Yang(杨晓冬). Chin. Phys. B, 2023, 32(4): 040702.
[2] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[3] Observing the steady-state visual evoked potentials with a compact quad-channel spin exchange relaxation-free magnetometer
Peng-Cheng Du(杜鹏程), Jian-Jun Li(李建军), Si-Jia Yang(杨思嘉), Xu-Tong Wang(王旭桐), Yan Zhuo(卓彦), Fan Wang(王帆), Ru-Quan Wang(王如泉). Chin. Phys. B, 2019, 28(4): 040702.
[4] Low drift nuclear spin gyroscope with probe light intensity error suppression
Wenfeng Fan(范文峰), Wei Quan(全伟), Feng Liu(刘峰), Lihong Duan(段利红), Gang Liu(刘刚). Chin. Phys. B, 2019, 28(11): 110701.
[5] In-situ measurement of magnetic field gradient in a magnetic shield by a spin-exchange relaxation-free magnetometer
Fang Jian-Cheng (房建成), Wang Tao (王涛), Zhang Hong (张红), Li Yang (李阳), Cai Hong-Wei (蔡洪炜). Chin. Phys. B, 2015, 24(6): 060702.
[6] Applicability of initial optimal maternal and fetal electrocardiogram combination vectors to subsequent recordings
Yan Hua-Wen (闫华文), Huang Xiao-Lin (黄晓林), Zhao Ying (肇莹), Si Jun-Feng (司峻峰), Liu Tie-Bing (刘铁兵), Liu Hong-Xing (刘红星). Chin. Phys. B, 2014, 23(11): 118702.
[7] Light propagation properties of two-dimensional photonic crystal channel filters with elliptical micro-cavities
Feng Shuai(冯帅) and Wang Yi-Quan(王义全) . Chin. Phys. B, 2011, 20(10): 104207.
[8] Theoretical analysis of ionic autoionization spectra of lanthanum via an intermediate state [Xe]5d6d 1P1
Zhong Yin-Peng(仲银鹏), Jia Feng-Dong(贾凤东), and Zhong Zhi-Ping(钟志萍). Chin. Phys. B, 2009, 18(10): 4242-4250.
[9] Mutual recombination in slow Si+ + H- collisions
Wang Jian-Guo(王建国), Liu Chun-Lei(刘春雷), Janev R. K., Yan Jun(颜君), and Shi Jian-Rong(施建荣). Chin. Phys. B, 2006, 15(11): 2651-2656.
No Suggested Reading articles found!