Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 120702    DOI: 10.1088/1674-1056/22/12/120702
GENERAL Prev   Next  

A laser pump-re-pump atomic magnetometer

Yang Ai-Lin (杨爱林), Yang Guo-Qing (杨国卿), Cai Xun-Ming (蔡勋明), Xu Yun-Fei (徐云飞), Lin Qiang (林强)
Institute of Optics, Department of Physics, Zhejiang University, Hangzhou 310027, China
Abstract  We demonstrate experimentally an atomic magnetometer based on optical pumping theory, a magnetic resonance that is induced by a radio frequency field and dependent on the magnetic field strength. Compared with the conventional method using one radiation field, which is used not only as the probe beam but also as a pump beam, the additional re-pump beam can increase remarkably the amplitude of the signal. It is shown that the amplitude of the magnetic field resonance signal can increase more than 55% by using an additional re-pump beam, which makes the sensitivity of the magnetometer higher. Finally, we investigate the relation between amplitude of the signal and re-pump laser power, and calculate the atomic population in the trapping states with rate equations.
Keywords:  atomic magnetometer      optical pumping      sensitivity  
Received:  27 November 2012      Revised:  09 May 2013      Accepted manuscript online: 
PACS:  07.55.Ge (Magnetometers for magnetic field measurements)  
  76.70.Hb (Optically detected magnetic resonance (ODMR))  
  33.80.Be (Level crossing and optical pumping)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60925022 and 11104243), the Fundamental Research Funds for the Central Universities, China (Grant No. 2012FZA3001), and the National Key Basic Research and Development Program of China (Grant No. 2013CB329501).
Corresponding Authors:  Lin Qiang     E-mail:  qlin@zju.edu.cn

Cite this article: 

Yang Ai-Lin (杨爱林), Yang Guo-Qing (杨国卿), Cai Xun-Ming (蔡勋明), Xu Yun-Fei (徐云飞), Lin Qiang (林强) A laser pump-re-pump atomic magnetometer 2013 Chin. Phys. B 22 120702

[1] Sarma B S P, Verma B K and Satyanarayana S V 1999 Geophysics 64 1735
[2] Livanov M N, Kozlov A N, Sinelnikova S E, Kholodov J A, Markin V P, Gorbach A M and Korinewsky A V 1981 Adv. Cardiol. 28 78
[3] Bison G, Wynands R and Weis A 2003 Appl. Phys. B: Lasers Opt. 76 325
[4] Dehmelt H G 1957 Phys. Rev. 105 1487
[5] Kominis I K, Kornack T W, Allred J C and Romalis M V 2003 Nature 422 596
[6] Patton B, Versolato O, Hovde D C, Corsini E, Higbie J and Budker D 2012 Appl. Phys. Lett. 101 083502
[7] Sternickel K and Braginski A 2006 Supercond. Sci. Technol. 19 S160
[8] Xu S, Yashchuk V V, Donaldson M H, Rochester S M, Budker D and Pines A 2006 Proc. Natl. Acad. Sci. USA 103 12668
[9] Zivotskya O, Postavaa K, Krausb L, Jiraskovac Y, Juraszekd J, Teilletd J, Barcovaa K, Svece P, Janickovice D and Piatoraa J 2008 J. Magn. Magn. Mater. 320 1535
[10] Bonavolonta C, Valentino M, Peluso G and Barone A 2007 IEEE Trans. Appl. Supercond. 17 772
[11] Kuroda M, Yamanaka S and Isobe Y 2005 NDT& E International 38 53
[12] Tralshawala N, Claycomb J and Miller J 1997 Appl. Phys. Lett. 71 1573
[13] Zhang S L, Liu Y B, Zeng J, Wang Y L, Kong X Y and Xie X M 2012 Acta Phys. Sin. 61 020701 (in Chinese)
[14] Gu H F, Cai W Y and Wei Y K 2012 Chin. Phys. B 21 040702
[15] Huang K K, Li N and Lu X H 2012 Chin. Phys. Lett. 29 100701
[16] Happer W 1972 Rev. Mod. Phys. 44 169
[17] Bloom A L 1962 Appl. Opt. 1 61
[18] Groeger S, Pazgalev A S and Weis A 2005 Appl. Phys. B: Lasers Opt. 80 645
[19] Wieman C and Hansch T W 1976 Phys. Rev. Lett. 36 1170
[20] Liu G and Gu S 2010 J. Phys. B: At. Mol. Opt. Phys. 43 035004
[21] Seltzer S 2008 "Developments in Alkali-Metal Atomic Magnetometry" Ph. D. Thesis (New Jersey: Princeton University)
[22] Drake G W F (ed.) 2006 Handbook of Atomic, Molecular, and Optical Physics (New York: Springer-Verlag) p. 1005
[1] A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography
Qing-Qian Guo(郭清乾), Tao Hu(胡涛), Xiao-Yu Feng(冯晓宇), Ming-Kang Zhang(张明康), Chun-Qiao Chen(陈春巧), Xin Zhang(张欣), Ze-Kun Yao(姚泽坤), Jia-Yu Xu(徐佳玉),Qing Wang(王青), Fang-Yue Fu(付方跃), Yin Zhang(张寅), Yan Chang(常严), and Xiao-Dong Yang(杨晓冬). Chin. Phys. B, 2023, 32(4): 040702.
[2] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[3] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[4] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[5] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[6] Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
Kai-Feng Yin(尹凯峰), Ji-Xi Lu(陆吉玺), Fei Lu(逯斐), Bo Li(李博), Bin-Quan Zhou(周斌权), and Mao Ye(叶茂). Chin. Phys. B, 2022, 31(11): 110703.
[7] Plasmonic sensor with self-reference capability based on functional layer film composed of Au/Si gratings
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Yunping Qi(祁云平), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(1): 014206.
[8] Optical state selection process with optical pumping in a cesium atomic fountain clock
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Ya-Ni Zuo(左娅妮), Fa-Song Zheng(郑发松), Shao-Yang Dai(戴少阳), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(8): 080602.
[9] An effective pumping method for increasing atomic utilization in a compact cold atom clock
Xin-Chuan Ouyang(欧阳鑫川), Bo-Wen Yang(杨博文), Jian-Liao Deng(邓见辽), Jin-Yin Wan(万金银), Ling Xiao(肖玲), Hang-Hang Qi(亓航航), Qing-Qing Hu(胡青青), and Hua-Dong Cheng(成华东). Chin. Phys. B, 2021, 30(8): 083202.
[10] Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes
Si-Yuan Hao(郝思源), Xiao-Ping Lou(娄小平), Jing Zhu(祝静), Guang-Wei Chen(陈广伟), and Hui-Yu Li(李慧宇). Chin. Phys. B, 2021, 30(6): 060702.
[11] Improvement of the short-term stability of atomic fountain clock with state preparation by two-laser optical pumping
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Shao-Yang Dai(戴少阳), Ya-Ni Zuo(左娅妮), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(5): 050602.
[12] Search for topological defect of axionlike model with cesium atomic comagnetometer
Yucheng Yang(杨雨成), Teng Wu(吴腾), Jianwei Zhang(张建玮), and Hong Guo(郭弘). Chin. Phys. B, 2021, 30(5): 050704.
[13] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[14] Sensitivity enhancement of micro-optical gyro with photonic crystal
Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2021, 30(4): 044208.
[15] Atomic magnetometer with microfabricated vapor cells based on coherent population trapping
Xiaojie Li(李晓杰), Yue Shi(史越), Hongbo Xue(薛洪波), Yong Ruan(阮勇), and Yanying Feng(冯焱颖). Chin. Phys. B, 2021, 30(3): 030701.
No Suggested Reading articles found!