Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 063401    DOI: 10.1088/1674-1056/23/6/063401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Measurement of 129Xe frequency shift due to Cs-129Xe collisions

Fang Jian-Cheng (房建成), Wan Shuang-Ai (万双爱), Chen Yao (陈瑶)
School of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing 100191, China
Abstract  Enhancement factor κ0, which characterizes NMR and EPR frequency shifts for Cs-129Xe, is measured for the first time. The enhancement factor κ0 was measured to be (702±41) at 80 ℃ and (653±20) at 90 ℃, using the NMR frequency shift, detected by atomic magnetometer at a low magnetic field of 100 nT. This result is useful for predicting the EPR frequency shifts for Cs and the NMR frequency shifts for 129Xe in spin-exchange cells.
Keywords:  Cs-129Xe      frequency shift      atomic magnetometer  
Received:  27 December 2013      Revised:  14 February 2014      Accepted manuscript online: 
PACS:  34.10.+x (General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))  
  85.70.-w (Magnetic devices)  
  85.60.-q (Optoelectronic devices)  
Fund: Project supported by the Key Program of the National Natural Science Foundation of China (Grant Nos. 61227902, 61273067, and 6137210) and SAST Foundation of China.
Corresponding Authors:  Wan Shuang-Ai     E-mail:  sawan@aspe.buaa.edu.cn

Cite this article: 

Fang Jian-Cheng (房建成), Wan Shuang-Ai (万双爱), Chen Yao (陈瑶) Measurement of 129Xe frequency shift due to Cs-129Xe collisions 2014 Chin. Phys. B 23 063401

[1] Walker T G and Happer W 1997 Rev. Mod. Phys. 69 629
[2] Vold T G, Raab F, Hecet B and Fortson E N 1984 Phys. Rev. Lett. 52 2229
[3] Rosenberry M A and Chupp T E 2001 Phys. Rev. Lett. 86 22
[4] Bear D, Stoner R E, Walsworth R L, Kostelecky V A and Lane C D 2000 Phys. Rev. Lett. 85 5038
[5] Kornack T W and Romalis M V 2002 Phys. Rev. Lett. 89 253002
[6] Smiciklas M, Brown J M, Cheuk L W, Smullin S J and Romalis M V 2011 Phys. Rev. Lett. 107 171604
[7] Fang J C, Qin J, Wan S A, Chen Y and Li R J 2012 Chin. Sci. Bull. 58 1512
[8] Newbury N R 1993 Phys. Rev. A 48 558
[9] Yablonskiy D A, Sukstanskii A L, Woods J C, Gierada D S, Quirk J D, Hogg J C, Cooper J D and Conradi M S 2009 J. Appl. Phys. 107 1258
[10] Jau Y Y, Kuzma N N and Happer W 2004 Phys. Rev. A 69 061401
[11] Ni Z X, Shi Q C and Chen Z J 1998 Chin. Phys. 7 481
[12] Zhang J C, Zhu Z L and Sun J F 2012 Acta Phys. Sin. 61 093401 (in Chinese)
[13] Schaefer S R, Cates G D, Chien T R, Gonatas D, Happer W and Walker T G 1989 Phys. Rev. A 39 11
[14] Babcock E, Nelson I A, Kadlecek S and Walker T G 2005 Phys. Rev. A 71 013414
[15] Romalis M V and Cates G D 1998 Phys. Rev. A 58 3004
[16] Barton A S, Newbury N R, Cates G D, Driehuys B, Middleton H and Saam B 1994 Phys. Rev. A 49 2766
[17] Ma Z L, Sorte E G and Saam B 2011 Phys. Rev. Lett. 106 193005
[18] Allred J C, Lyman R N, Kornack T W and Romalis M V 2002 Phys. Rev. Lett. 89 130801
[19] Kominis I K, Kornack T W, Allred J C and Romalis M V 2003 Nature 422 596
[20] Gusarov A, Levron D, Baranga B A, Paperno E and Shuker R 2011 J. Appl. Phys. 109 07E507
[21] Seltzer S J and Romalis M V 2009 Appl. Phys. Lett. 85 4804
[22] Ledbetter M P, Savukov I M, Acosta V M, Budker D and Romalis M V 2008 Phys. Rev. A 77 033408
[23] Walker T G 1989 Phys. Rev. A 40 9
[1] A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography
Qing-Qian Guo(郭清乾), Tao Hu(胡涛), Xiao-Yu Feng(冯晓宇), Ming-Kang Zhang(张明康), Chun-Qiao Chen(陈春巧), Xin Zhang(张欣), Ze-Kun Yao(姚泽坤), Jia-Yu Xu(徐佳玉),Qing Wang(王青), Fang-Yue Fu(付方跃), Yin Zhang(张寅), Yan Chang(常严), and Xiao-Dong Yang(杨晓冬). Chin. Phys. B, 2023, 32(4): 040702.
[2] Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
Kai-Feng Yin(尹凯峰), Ji-Xi Lu(陆吉玺), Fei Lu(逯斐), Bo Li(李博), Bin-Quan Zhou(周斌权), and Mao Ye(叶茂). Chin. Phys. B, 2022, 31(11): 110703.
[3] Evaluation of second-order Zeeman frequency shift in NTSC-F2
Jun-Ru Shi(施俊如), Xin-Liang Wang(王心亮), Yang Bai(白杨), Fan Yang(杨帆), Yong Guan(管勇), Dan-Dan Liu(刘丹丹), Jun Ruan(阮军), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2021, 30(7): 070601.
[4] Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes
Si-Yuan Hao(郝思源), Xiao-Ping Lou(娄小平), Jing Zhu(祝静), Guang-Wei Chen(陈广伟), and Hui-Yu Li(李慧宇). Chin. Phys. B, 2021, 30(6): 060702.
[5] Search for topological defect of axionlike model with cesium atomic comagnetometer
Yucheng Yang(杨雨成), Teng Wu(吴腾), Jianwei Zhang(张建玮), and Hong Guo(郭弘). Chin. Phys. B, 2021, 30(5): 050704.
[6] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[7] Atomic magnetometer with microfabricated vapor cells based on coherent population trapping
Xiaojie Li(李晓杰), Yue Shi(史越), Hongbo Xue(薛洪波), Yong Ruan(阮勇), and Yanying Feng(冯焱颖). Chin. Phys. B, 2021, 30(3): 030701.
[8] Comparative calculation on Li+ solvation in common organic electrolyte solvents for lithium ion batteries
Qi Liu(刘琦), Feng Wu(吴锋), Daobin Mu(穆道斌), Borong Wu(吴伯荣). Chin. Phys. B, 2020, 29(4): 048202.
[9] Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography
Jian-Jun Li(李建军), Peng-Cheng Du(杜鹏程), Ji-Qing Fu(伏吉庆), Xu-Tong Wang(王旭桐), Qing Zhou(周庆), Ru-Quan Wang(王如泉). Chin. Phys. B, 2019, 28(4): 040703.
[10] Influence of pump intensity on atomic spin relaxation in a vapor cell
Chen Yang(杨晨), Guan-Hua Zuo(左冠华), Zhuang-Zhuang Tian(田壮壮), Yu-Chi Zhang(张玉驰), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(11): 117601.
[11] Effect of external magnetic field on the shift of resonant frequency in photoassociation of ultracold Cs atoms
Pengwei Li(李鹏伟), Yuqing Li(李玉清), Guosheng Feng(冯国胜), Jizhou Wu(武寄洲), Jie Ma(马杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2019, 28(1): 013702.
[12] Flexible control of semiconductor laser with frequency tunable modulation transfer spectroscopy
Ning Ru(茹宁), Yu Wang(王宇), Hui-Juan Ma(马慧娟), Dong Hu(胡栋), Li Zhang(张力), Shang-Chun Fan(樊尚春). Chin. Phys. B, 2018, 27(7): 074201.
[13] Combined effect of light intensity and temperature on the magnetic resonance linewidth in alkali vapor cell with buffer gas
Yang Gao(高阳), Hai-Feng Dong(董海峰), Xiang Wang(王翔), Xiao-Fei Wang(王笑菲), Ling-Xiao Yin(尹凌霄). Chin. Phys. B, 2017, 26(6): 067801.
[14] Spin dynamics of magnetic resonance with parametric modulation in a potassium vapor cell
Rui Zhang(张锐), Zhi-Guo Wang(汪之国), Xiang Peng(彭翔), Wen-Hao Li(黎文浩), Song-Jian Li(李松健), Hong Guo(郭弘). Chin. Phys. B, 2017, 26(3): 030701.
[15] Coherent population trapping magnetometer by differential detecting magneto-optic rotation effect
Fan Zhang(张樊), Yuan Tian(田原), Yi Zhang(张奕), Si-Hong Gu(顾思洪). Chin. Phys. B, 2016, 25(9): 094206.
No Suggested Reading articles found!