Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 118105    DOI: 10.1088/1674-1056/24/11/118105
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Crossover from 2-dimensional to 3-dimensional aggregations of clusters on square lattice substrates

Cheng Yi (程毅)a, Zhu Yu-Hong (祝宇红)b, Pan Qi-Fa (潘启发)a, Yang Bo (杨波)a, Tao Xiang-Ming (陶向明)a, Ye Gao-Xiang (叶高翔)a
a Department of Physics, Zhejiang University, Hangzhou 310027, China;
b Department of Physics, Hangzhou Normal University, Hangzhou 310036, China
Abstract  A Monte Carlo study on the crossover from 2-dimensional to 3-dimensional aggregations of clusters is presented. Based on the traditional cluster-cluster aggregation (CCA) simulation, a modified growth model is proposed. The clusters (including single particles and their aggregates) diffuse with diffusion step length l (1 ≤ l ≤ 7) and aggregate on a square lattice substrate. If the number of particles contained in a cluster is larger than a critical size sc, the particles at the edge of the cluster have a possibility to jump onto the upper layer, which results in the crossover from 2-dimensional to 3-dimensional aggregations. Our simulation results are in good agreement with the experimental findings.
Keywords:  simulation      cluster      aggregation      crossover  
Received:  28 April 2015      Revised:  09 July 2015      Accepted manuscript online: 
PACS:  81.15.Aa (Theory and models of film growth)  
  36.40.Sx (Diffusion and dynamics of clusters)  
  61.43.Hv (Fractals; macroscopic aggregates (including diffusion-limited Aggregates))  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374082 and 11074215), the Science Foundation of Zhejiang Province Department of Education, China (Grant No. Y201018280), the Fundamental Research Funds for Central Universities, China (Grant No. 2012QNA3010), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100101110005).
Corresponding Authors:  Ye Gao-Xiang     E-mail:  gxye@mail.hz.zj.cn

Cite this article: 

Cheng Yi (程毅), Zhu Yu-Hong (祝宇红), Pan Qi-Fa (潘启发), Yang Bo (杨波), Tao Xiang-Ming (陶向明), Ye Gao-Xiang (叶高翔) Crossover from 2-dimensional to 3-dimensional aggregations of clusters on square lattice substrates 2015 Chin. Phys. B 24 118105

[1] Evans J W, Thiel P A and Bartelt M C 2006 Surf. Sci. Rep. 61 1
[2] Einax M, Dieterich W and Maass P;2013 Rev. Mod. Phys. 85 921
[3] Liu B G, Wu J, Wang E G and Zhang Z;1999 Phys. Rev. Lett. 83 1195
[4] Ohno K and Kawazoe Y;2000 Comput. Theor. Polym. Sci. 10 269
[5] Ruiz R, Nickel B, Koch N, Feldman L C, Haglund R F, Kahn A, Family F and Scoles G;2003 Phys. Rev. Lett. 91 136102
[6] Pao C W and Srolovitz D J;2006 Phys. Rev. Lett. 96 186103
[7] Ebrahimnazhad Rahbari S H and Saberi A A;2012 Phys. Rev. E 86 011407
[8] Witten T A and Sander L M;1981 Phys. Rev. Lett. 47 1400
[9] Kolb M, Botet R and Jullien R;1983 Phys. Rev. Lett. 51 1123
[10] Meakin P;1983 Phys. Rev. Lett. 51 1119
[11] Vicsek T and Family F;1984 Phys. Rev. Lett. 52 1669
[12] Jensen P, Barabási A L, Larralde H, Havlin S and Stanley H E;1994 Phys. Rev. B 50 15316
[13] Tersoff J, Denier van der Gon A W and Tromp R M;1994 Phys. Rev. Lett. 72 266
[14] Zhang Z, Chen X and Lagally M G;1994 Phys. Rev. Lett. 73 1829
[15] Ye G X, Michely T, Weidenhof V, Friedrich I and Wuttig M;1998 Phys. Rev. Lett. 81 622
[16] Ye G X, Xia A G, Gao G L, Lao Y F and Tao X M;2001 Phys. Rev. B 63 125405
[17] Ye Q L, Xu X J, Cai P G, Xia A G and Ye G X;2003 Phys. Lett. A 318 457
[18] Xie J P, Yu W Y, Zhang S L, Chen M G and Ye G X;2007 Phys. Lett. A 371 160
[19] Zhang X F, Zhang C H, Lü N, Xie J P and Ye G X;2010 Chin. Phys. Lett. 27 096102
[20] Zhang C H, Lü N, Zhang X F, Yang B and Ye G X;2011 J. Phys.: Condens. Matter 23 435006
[21] Lü N, Zhang C H, Yang B, Pan Q F and Ye G X;2012 J. Phys. Soc. Jpn. 81 094605
[22] Zhang X F, Zhang C H, Yang B, Lü N, Pan Q F and Ye G X;2011 J. Phys. Soc. Jpn. 80 104603
[23] Zhang C H, Lü N, Zhu Y H, Zhang X F and Ye G X;2012 J. Phys. Soc. Jpn. 81 034602
[24] Zhang Z and Lagally M G;1997 Science 276 377
[25] Korner M, Loske F, Einax M, Kuhnle A, Reichling M and Maass P;2011 Phys. Rev. Lett. 107 016101
[26] Brune H 1998 Surf. Sci. Rep. 31 125
[27] Michely T and Krug J 2004 Islands, Mounds and Atoms: Patterns and Processes in Crystal Growth Far from Equilibrium (Berlin: Springer)
[28] Luo M B, Ye G X, Xia A G, Jin J S, Yang B and Xu J M;1999 Phys. Rev. B 59 3218
[29] Wu F M, Xu Y S, Ye G X and Wu Z Q;2005 Chin. Phys. B 14 1873
[30] Meakin P, Vicsek T and Family F 1985 Phys. Rev. B 31 564
[31] Qian C J, Gao G L, Li H, Luo M B and Ye G X;2002 Phys. Lett. A 299 292
[32] Fang Z N, Yang B, Chen M G, Zhang C H, Xie J P and Ye G X;2009 Thin Solid Films 517 3408
[33] Lü N, Pan Q F, Cheng Y, Yang B and Ye G X;2013 Chin. Phys. B 22 116103
[34] Zhang C H, Lü N, Zhang X F, Saida A, Xia A G and Ye G X;2011 Chin. Phys. B 20 066103
[1] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[4] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[5] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[6] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[7] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[8] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[9] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[10] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[11] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[12] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[13] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[14] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[15] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
No Suggested Reading articles found!