PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Au nanorods-incorporated plasmonic-enhanced inverted organic solar cells |
Peng Ling (彭玲)a b, Mei Yang (梅杨)a, Chen Shu-Fen (陈淑芬)a, Zhang Yu-Pei (张玉佩)a, Hao Jing-Yu (郝敬昱)a, Deng Ling-Ling (邓玲玲)a b, Huang Wei (黄维)a c |
a Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Nanjing University of Posts & Telecommunications Synergistic Innovation Center for Advanced Materials, Nanjing 210023, China; b School of Opto-Electronic Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; c Key Laboratory of Flexible Electronics & Institute of Advanced Materials, National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China |
|
|
Abstract The effect of Au nanorods (NRs) on optical-to-electric conversion efficiency is investigated in inverted polymer solar cells, in which Au NRs are sandwiched between two layers of ZnO. Accompanied by the optimization of thickness of ZnO covered on Au NRs, a high-power conversion efficiency of 3.60% and an enhanced short-circuit current density (JSC) of 10.87 mA/cm2 are achieved in the poly(3-hexylthiophene): [6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC60BM)-based inverted cell and the power conversion efficiency (PCE) is enhanced by 19.6% compared with the control device. The detailed analyses of the light absorption characteristics, the simulated scattering induced by Au NRs, and the electromagnetic field around Au NRs show that the absorption improvement in the photoactive layer due to the light scattering from the longitudinal axis and the near-field increase around Au NRs induced by localized surface plasmon resonance plays a key role in enhancing the performances.
|
Received: 03 April 2015
Revised: 01 June 2015
Accepted manuscript online:
|
PACS:
|
52.35.Hr
|
(Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))
|
|
52.25.Tx
|
(Emission, absorption, and scattering of particles)
|
|
68.37.Lp
|
(Transmission electron microscopy (TEM))
|
|
68.37.Ps
|
(Atomic force microscopy (AFM))
|
|
Fund: Project supported by the Ministry of Science and Technology, China (Grant No. 2012CB933301), the National Natural Science Foundation of China (Grant Nos. 61274065, 51173081, 61136003, BZ2010043, 51372119, and 51172110), and the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions and Synergetic Innovation Center for Organic Electronics and Information Displays, China. |
Corresponding Authors:
Chen Shu-Fen, Huang Wei
E-mail: iamsfchen@njupt.edu.cn;iamdirector@fudan.edu.cn
|
Cite this article:
Peng Ling (彭玲), Mei Yang (梅杨), Chen Shu-Fen (陈淑芬), Zhang Yu-Pei (张玉佩), Hao Jing-Yu (郝敬昱), Deng Ling-Ling (邓玲玲), Huang Wei (黄维) Au nanorods-incorporated plasmonic-enhanced inverted organic solar cells 2015 Chin. Phys. B 24 115202
|
[1] |
Coakley K M and McGehee M D;2004 Chem. Mater. 16 4533
|
[2] |
Moon J S, Takacs C, Cho S, Coffin R C, Kim H, Bazan G C and Heeger A J;2010 Nano Lett. 10 4005
|
[3] |
Peet J M L, Senatore M L, Heeger A J and Bazan G C;2009 Adv. Mater. 21 1521
|
[4] |
You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C, Gao J, Li G and Yang Y;2013 Nat. Commun. 4 1446
|
[5] |
Zhou H, Zhang Y, Seier J, Collins S D, Luo C, Bazan G C, Nguyen T Q and Heeger A J;2013 Adv. Mater. 25 1646
|
[6] |
Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z and Zhao Y 2009 Acta Phys. Sin. 58 1980 (in Chinese)
|
[7] |
Zhou R L, Chen X S, Zeng Y, Zhang J B, Chen H B, Wang S W, Lu W, Li H J, Xia H and Wang L L 2008 Acta Phys. Sin. 57 3506 (in Chinese)
|
[8] |
Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
|
[9] |
Xiang C P, Jin Y, Liu J T, Xu B Z, Wang W M, Wei X, Song G F and Xu Y 2014 Chin. Phys. B 23 038803
|
[10] |
Mahmoud A Y, Zhang J, Ma D, Izquierdo R and Truong V V;2012 Org. Electron. 13 3102
|
[11] |
Tan K S, Chuang M K, Chen F C and Hsu C S;2013 ACS Appl. Mater. Interfaces 5 12419
|
[12] |
Hao J Y, Xu Y, Zhang Y P, Chen S F, Li X A, Wang L H and Huang W;2015 Chin. Phys. B 24 045201
|
[13] |
Heo S W, Lee E J, Song K W, Lee J Y and Moon D K;2013 Org. Electron. 14 1931
|
[14] |
Li X, Choy W C H, Lu H, Sha W E I and Ho A H P;2013 Adv. Funct. Mater. 23 2728
|
[15] |
Wang D H, Kim D Y, Choi K W, Seo J H, Im S H, Park J H, Park O O and Heeger A J;2011 Angew. Chem. Int. Ed. 50 5519
|
[16] |
Chen X, Zhao C, Rothberg L and Ng M K;2008 Appl. Phys. Lett. 93 123302
|
[17] |
Heo M, Cho H, Jung J W, Jeong J R and Park S;2011 Adv. Mater. 23 5689
|
[18] |
Morfa A J, Rowlena K L, Reilly T H, Romero M J and Lagemaatb J V D;2008 Appl. Phys. Lett. 92 013504
|
[19] |
Qu D, Liu F, Huang Y, Xie W and Xu Q;2011 Opt. Express 19 24795
|
[20] |
Wu B, Wu X, Guan C, Tai K F, Yeow E K L, Fan H J, Mathews N and Sum T C;2013 Nat. Commun. 4 2004
|
[21] |
Anger P, Bharadwaj P and Novotny L;2006 Phys. Rev. Lett. 96 113002
|
[22] |
Chen S F, Cheng F, Mei Y, Peng B, Kong M, Hao J Y, Zhang R, Xiong Q H, Wang L H and Huang W;2014 Appl. Phys. Lett. 104 213903
|
[23] |
Zhou J, Xue M, Shen H, Wu Z, Kim S and Ho J J;2011 Appl. Phys. Lett. 98 151110
|
[24] |
Janković V, Yang Y, You J, Dou L, Liu Y, Cheung P, Chang J P and Yang Y;2013 ACS Nano 7 3815
|
[25] |
Lu L, Luo Z, Xu T and Yu L;2013 Nano Lett. 13 59
|
[26] |
Atwater H A and Polman A 2010 Nat. Mater. 9 205
|
[27] |
Dijk M A V, Tchebotareva A L, Orrit M, Lippitz M, Berciaud S, Lasne D, Cognetc L and Lounisc B 2006 Phys. Chem. Chem. Phys. 8 3486
|
[28] |
Hsiao Y S, Charan S, Wu F Y, Chien F C, Chu C W, Chen P and Chen F C;2012 J. Phys. Chem. C 116 20731
|
[29] |
Kim K and Carroll D L;2005 Appl. Phys. Lett. 87 203113
|
[30] |
Mihailetchi V D, Blom P W M, Hummelen J C, Rispens M T;2003 J. Appl. Phys. 94 6849
|
[31] |
Sun J, Zhu Y, Xu X, Lan L, Zhang L, Cai P, Chen J, Peng J and Cao Y;2012 J. Phys. Chem. C 116 14188
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|