Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 107804    DOI: 10.1088/1674-1056/24/10/107804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Exploring positron characteristics utilizing two new positron-electron correlation schemes based on multiple electronic structure calculation methods

Zhang Wen-Shuai (张文帅)a b, Gu Bing-Chuan (谷冰川)a b, Han Xiao-Xi (韩小溪)a b, Liu Jian-Dang (刘建党)a b, Ye Bang-Jiao (叶邦角)a b
a Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;
b State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
Abstract  

We make a gradient correction to a new local density approximation form of positron-electron correlation. The positron lifetimes and affinities are then probed by using these two approximation forms based on three electronic-structure calculation methods, including the full-potential linearized augmented plane wave (FLAPW) plus local orbitals approach, the atomic superposition (ATSUP) approach, and the projector augmented wave (PAW) approach. The differences between calculated lifetimes using the FLAPW and ATSUP methods are clearly interpreted in the view of positron and electron transfers. We further find that a well-implemented PAW method can give near-perfect agreement on both the positron lifetimes and affinities with the FLAPW method, and the competitiveness of the ATSUP method against the FLAPW/PAW method is reduced within the best calculations. By comparing with the experimental data, the new introduced gradient corrected correlation form is proved to be competitive for positron lifetime and affinity calculations.

Keywords:  positron annihilation      positron lifetime      electronic structure  
Received:  23 April 2015      Revised:  02 June 2015      Accepted manuscript online: 
PACS:  78.70.Bj (Positron annihilation)  
  71.60.+z (Positron states)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11175171 and 11105139).

Corresponding Authors:  Ye Bang-Jiao     E-mail:  bjye@ustc.edu.cn

Cite this article: 

Zhang Wen-Shuai (张文帅), Gu Bing-Chuan (谷冰川), Han Xiao-Xi (韩小溪), Liu Jian-Dang (刘建党), Ye Bang-Jiao (叶邦角) Exploring positron characteristics utilizing two new positron-electron correlation schemes based on multiple electronic structure calculation methods 2015 Chin. Phys. B 24 107804

[1] Tuomisto F and Makkonen I 2013 Rev. Mod. Phys. 85 1583
[2] Yuan D Q, Zheng Y N, Zuo Y, et al. 2014 Chin. Phys. Lett. 31 046101
[3] Li Y F, Shen T L, Gao X, et al. 2014 Chin. Phys. Lett. 31 036101
[4] Makkonen I, Ervasti M M, Siro T and Harju A 2014 Phys. Rev. B 89 041105
[5] Nieminen R M, Boroński E and Lantto L J 1985 Phys. Rev. B 32 1377
[6] Puska M J, Seitsonen A P and Nieminen R M 1995 Phys. Rev. B 52 10947
[7] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[8] Kuriplach J and Barbiellini B 2014 Phys. Rev. B 89 155111
[9] Kuriplach J and Barbiellini B 2014 J. Phys.: Conf. Ser. 505 012040
[10] Zhang W, Gu B, Liu J and Ye B 2015 Comput. Mater. Sci. 105 32
[11] Drummond N D, López Ríos P, Needs R J and Pickard C J 2011 Phys. Rev. Lett. 107 207402
[12] Drummond N D, López Ríos P, Pickard C J and Needs R J 2010 Phys. Rev. B 82 035107
[13] Sjöstedt E, Nordström L and Singh D J 2000 Solid State Commun. 114 15
[14] Blöchl P E 1994 Phys. Rev. B 50 17953
[15] Puska M J and Nieminen R M 1983 J. Phys. F: Met. Phys. 13 333
[16] Wiktor J, Kerbiriou X, Jomard G, Esnouf S, Barthe M F and Bertolus M 2014 Phys. Rev. B 89 155203
[17] Wiktor J, Barthe M F, Jomard G, Torrent M, Freyss M and Bertolus M 2014 Phys. Rev. B 90 184101
[18] Makkonen I, Hakala M and Puska M J 2006 Phys. Rev. B 73 035103
[19] Rauch C, Makkonen I and Tuomisto F 2011 Phys. Rev. B 84 125201
[20] Huang S J, Zhang W S, Liu J D, Zhang J, Li J and Ye B J 2014 Acta Phys. Sin 63 217804 (in Chinese)
[21] Boroński E and Nieminen R M 1986 Phys. Rev. B 34 3820
[22] Jensen K O 1989 J. Phys.: Condens. Matter 1 10595
[23] Stachowiak H and Lach J 1993 Phys. Rev. B 48 9828
[24] Boroński E 2010 Nukleonika 55 9
[25] Boroński E and Stachowiak H 1998 Phys. Rev. B 57 6215
[26] Barbiellini B, Puska M J, Torsti T and Nieminen R M 1995 Phys. Rev. B 51 7341
[27] Barbiellini B, Puska M J, Korhonen T, Harju A, Torsti T and Nieminen R M 1996 Phys. Rev. B 53 16201
[28] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Austria, 2001
[29] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.: Condens. Matter 21 395502
[31] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406
[32] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[33] Corso A D 2014 Comput. Mater. Sci. 95 337
[34] Campillo Robles J M and Plazaola F 2003 Defect Diffus. Forum 213-215 141
[35] Seeger A, Barnhart F and W B 1989 in Positron Annihilation, eds. Dorikens-Vanpraet L, Dorikens M and Segers D (Singapore: World Scientific) p. 275s; see also Sterne P A, Kaiser J H 1991 Phys. Rev. B 43 13892; and Jensen K O 1989 J. Phys.: Condens. Matter 1 10595
[36] Welch D O and Lynn K G 1976 Phys. Status Solidi B 77 277
[37] Wang Z, Wang S J, Chen Z Q, Ma L and Li S 2000 Phys. Stat. Sol. 177 341
[38] Saarinen K, Hautojärvi P, Lanki P and Corbel C 1991 Phys. Rev. B 44 10585
[39] Polity A, Rudolf F, Nagel C, Eichler S and Krause-Rehberg R 1997 Phys. Rev. B 55 10467
[40] Dlubek G, Krause R, Brümmer O and Tittes J 1987 Appl. Phys. A: Solids Surf. 42 125
[41] Dannefaer S, Hogg B and Kerr D 1984 Phys. Rev. B 30 3355
[42] Beling C D, Deng A H, Shan Y Y, Zhao Y W, Fung S, Sun N F, Sun T N and Chen X D 1998 Phys. Rev. B 58 13648
[43] Chen Z Q, Hu X W and Wang S J 1998 Appl. Phys. A: Solids Surf. 66 435
[44] Puska M J, Mäkinen S, Manninen M and Nieminen R M 1989 Phys. Rev. B 39 7666
[45] Dlubek G and Brümmer O 1986 Ann. Phys. (Leipzig) 7 178
[46] Dlubek G, Brümmer O, Plazaola F, Hautojärvi P and Naukkarinen K 1985 Appl. Phys. Lett. 46 1136
[47] Mizuno M, Araki H and Shirai Y 2004 Mater. Trans. 45 1964
[48] Brauer G, Anwand W, Skorupa W, Kuriplach J, Melikhova O, Moisson C, Wenckstern H, Schmidt H, Lorenz M and Grundmann M 2006 Phys. Rev. B 74 045208
[49] Uedono A, Koida T, Tsukazaki A, Kawasaki M, Chen Z Q, Chichibu S and Koinuma H 2003 J. Appl. Phys. 93 2481
[50] Brunner S, Puff W, Balogh A G and Mascher P 2001 Mater. Sci. Forum 363-365 141
[51] Tuomisto F, Ranki V, Saarinen K and Look D C 2003 Phys. Rev. Lett. 91 205502
[52] Plazaola F, Seitsonen A P and Puska M J 1994 J. Phys.: Condens. Matter 6 8809
[53] Gély-Sykes C, Corbel C and Triboulet R 1993 Solid State Commun. 80 79
[54] Peng Z L, Simpson P J and Maschera P 2000 Electrochem. Solid-State Lett. 3 150
[55] Geffroy B, Corbel C, Stucky M, Triboulet R, Hautojärvi P, Plazaola F L, Saarinen K, Rajainmäki H, Aaltonen J, Moser P, Sengupta A and Pautrat J L ewblock 1986 Defects in Semiconductors, ed. H. J. von Bardeleben, Materials Science Forum (Aedermannsdorff: Trans. Tech. Publications) Vol. 10-12, p. 1241
[56] Dannefaer S 1982 J. Phys. C 15 599
[57] Campillo Robles J M, Ogando E and Plazaola F 2007 J. Phys.: Condes. Matter 19 176222
[58] Tang Z, Hasegawa M, Nagai Y, Saito M and Kawazoe Y 2002 Phys. Rev. B 65 045108
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[5] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[6] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[7] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[8] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[9] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[10] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[11] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[12] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[13] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[14] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[15] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
No Suggested Reading articles found!