Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 107803    DOI: 10.1088/1674-1056/24/10/107803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Simulation of positron backscattering and implantation profiles using Geant4 code

Huang Shi-Juan (黄世娟)a b, Pan Zi-Wen (潘子文)a b, Liu Jian-Dang (刘建党)a b, Han Rong-Dian (韩荣典)a b, Ye Bang-Jiao (叶邦角)a b
a Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;
b State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
Abstract  For the proper interpretation of the experimental data produced in slow positron beam technique, the positron implantation properties are studied carefully using the latest Geant4 code. The simulated backscattering coefficients, the implantation profiles, and the median implantation depths for mono-energetic positrons with energy range from 1 keV to 50 keV normally incident on different crystals are reported. Compared with the previous experimental results, our simulation backscattering coefficients are in reasonable agreement, and we think that the accuracy may be related to the structures of the host materials in the Geant4 code. Based on the reasonable simulated backscattering coefficients, the adjustable parameters of the implantation profiles which are dependent on materials and implantation energies are obtained. The most important point is that we calculate the positron backscattering coefficients and median implantation depths in amorphous polymers for the first time and our simulations are in fairly good agreement with the previous experimental results.
Keywords:  positron beam      backscattering coefficient      implantation profile      Geant4  
Received:  17 April 2015      Revised:  07 July 2015      Accepted manuscript online: 
PACS:  78.70.-g (Interactions of particles and radiation with matter)  
  78.70.Bj (Positron annihilation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175171 and 11105139).
Corresponding Authors:  Ye Bang-Jiao     E-mail:  bjye@ustc.edu.cn

Cite this article: 

Huang Shi-Juan (黄世娟), Pan Zi-Wen (潘子文), Liu Jian-Dang (刘建党), Han Rong-Dian (韩荣典), Ye Bang-Jiao (叶邦角) Simulation of positron backscattering and implantation profiles using Geant4 code 2015 Chin. Phys. B 24 107803

[1] Krause-Rehberg R and Leipner H S 1999 Positron Annihilation in Semiconductors: Defect Studies(Berlin: Springer-Verlag)
[2] Schultz Peter J and Lynn K G 1988 Rev. Mod. Phys. 60 701
[3] Puska M J and Nieminen R M 1994 Rev. Mod. Phys. 66 841
[4] Tuomisto F and Makkonen I 2013 Rev. Mod. Phys. 85 1583
[5] Vehanen A, Saarinen K, Hautojärvi P and Huomo H 1987 Phys. Rev. B 35 4606
[6] Veen A van, Schut H, Vries J de, Hakvoort R A and Ijpma M R 1991 AIP Conf. Proc. 218 171
[7] Veen A van, Schut H, Clement M, Nijs J M M de, Kruseman A and Ijpma M R 1995 Appl. Surf. Sci. 85 216
[8] Saleh A S 2013 J. Theor. Appl. Phys. 7:39 1
[9] Valkealahti S and Nieminen R M 1983 Appl. Phys. A 32 95
[10] Mills A P and Wilson R J 1982 Phys. Rev. A 26 490
[11] Valkealahti S and Nieminen R M 1984 Appl. Phys. A 35 51
[12] Jensen K O, Walker A B and Bouarissa N 1990 AIP Conf. Proc. 218 17
[13] Jensen K O and Walker A B 1993 Surf. Sci 292 83
[14] Ghosh V J, Welch D O and Lynn K G 1993 Proceedings of the 5th International Workshop on Slow-Positron Beam Techniques for Solids and Surfacesp. 37
[15] Ritley K A, Lynn K G, Ghosh V J, Welch D O and McKeown M 1993 J. Appl. Phys. 74 3479
[16] Baró J, Sempau J, Fernández-Vareac J M and Salvat F 1995 Nucl. Instrum. Method Phys. Res. B 100 31
[17] Ritley K A, Ghosh V J, Lynn K G, McKeown M and Welch D O 1998 Comput. Phys. Commun. 109 93
[18] Treurniet J R and Rogers D W O 1999 NRC Report PIRS0669
[19] Jerzy Dryzek and Pawel Horodek 2008 Nucl. Instrum. Method Phys. Res. B 266 4000
[20] Baker J A and Coleman P G 1988 J. Phys. C: Solid State Phys. 21 L875
[21] Baker J A, Chilton N B, Jensen K O, Walker A B and Coleman P G 1991 Appl. Phys. Lett. 59 2962
[22] Baker J A, Chilton N B, Jensen K O, Walker A B and Coleman P G 1991 J. Phys.: Condens. Matter 3 4109
[23] Coleman P G, Albrecht L, Jensen K O and Walker A B 1992 J. Phys.: Condens. Matter 4 10311
[24] Makinen J, Palko S, Martikainen J and Hautojärvi P 1992 J. Phys.: Condens. Matter 4 L503
[25] Algers J, Sperr P, Egger W, Kögel G and Maurer F H J 2003 Phys. Rev. B 67 125404
[26] Palacio Carlos A, Baerdemaeker Jérémie De, Segers Danny, Mostafa Khaled M, Thourhout Dries Van and Dauwe Charles 2009 Mater. Sci. Forum 607 105
[27] Agostinelli S, Allison J, Amako K, et al. 2003 Nucl. Instrum. Method Phys. Res. A 506 250
[28] Geant4 web page: http://www.geant4.org/geant4/
[29] Goudsmit S and Saunderson J L 1940 Phys. Rev. 57 24
[30] Ivanchenko V N, Kadri O, Maire M and Urban L 2010 J. Phys.: Conf. Ser. 219 032045
[31] Aydin Asuman 2000 Radiat. Phys. Chem. 59 277
[32] Fernández-Varea J M, Liljequist D, Csillag S, Räty R and Salvat F 1996 Nucl. Instrum. Method Phys. Res. B 108 35
[33] Massoumi G R, Hozhabri N, Lennard W N and Schultz P J 1991 Phys. Rev. B 44 3486
[34] Ghosh V J and Aers G C 1995 Phys. Rev. B 51 45
[1] Neutron-induced single event upset simulation in Geant4 for three-dimensional die-stacked SRAM
Li-Hua Mo(莫莉华), Bing Ye(叶兵), Jie Liu(刘杰), Jie Luo(罗捷), You-Mei Sun(孙友梅), Chang Cai(蔡畅), Dong-Qing Li(李东青), Pei-Xiong Zhao(赵培雄), and Ze He(贺泽). Chin. Phys. B, 2021, 30(3): 036103.
[2] Geant4 simulation of proton-induced single event upset in three-dimensional die-stacked SRAM device
Bing Ye(叶兵), Li-Hua Mo(莫莉华), Tao Liu(刘涛), Jie Luo(罗捷), Dong-Qing Li(李东青), Pei-Xiong Zhao(赵培雄), Chang Cai(蔡畅), Ze He(贺泽), You-Mei Sun(孙友梅), Ming-Dong Hou(侯明东), Jie Liu(刘杰). Chin. Phys. B, 2020, 29(2): 026101.
[3] Investigation of flux dependent sensitivity on single event effect in memory devices
Jie Luo(罗捷), Tie-shan Wang(王铁山), Dong-qing Li(李东青), Tian-qi Liu(刘天奇), Ming-dong Hou(侯明东), You-mei Sun(孙友梅), Jing-lai Duan(段敬来), Hui-jun Yao(姚会军), Kai Xi(习凯), Bing Ye(叶兵), Jie Liu(刘杰). Chin. Phys. B, 2018, 27(7): 076101.
[4] Monte Carlo evaluation of spatial multiple-bit upset sensitivity to oblique incidence
Geng Chao (耿超), Liu Jie (刘杰), Xi Kai (习凯), Zhang Zhan-Gang (张战刚), Gu Song (古松), Hou Ming-Dong (侯明东), Sun You-Mei (孙友梅), Duan Jing-Lai (段敬来), Yao Hui-Jun (姚会军), Mo Dan (莫丹). Chin. Phys. B, 2013, 22(5): 059501.
[5] Monte Carlo simulation of electron beam air plasma characteristics
Deng Yong-Feng(邓永锋), Han Xian-Wei(韩先伟), and Tan Chang(谭畅). Chin. Phys. B, 2009, 18(9): 3870-3876.
[6] Monte Carlo simulation of exposure factor
Zhang Tao(张涛), Liu Yi-Bao(刘义保), Yang Bo(杨波), Wu He-Xi(吴和喜), and Gu Jin-Hu(顾金虎). Chin. Phys. B, 2009, 18(6): 2217-2222.
[7] Simulation of time bunching for a pulsed positron beam
Gao Chuan-Bo (高传波), Xiong Tao (熊 涛), Xi Chuan-Ying (郗传英), Weng Hui-Min (翁惠民), Ye Bang-Jiao (叶邦角), Han Rong-Dian (韩荣典), Zhou Xian-Yi (周先意). Chin. Phys. B, 2008, 17(11): 4149-4152.
[8] GEANT4 simulation of gamma ray in a double-gap resistive plate chamber
J. T. Rhee, M. Jamil, Steve Hall, Y. J. Jeon. Chin. Phys. B, 2006, 15(1): 108-115.
No Suggested Reading articles found!