ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Broadband and high-speed swept external-cavity laser using a quantum-dot superluminescent diode as gain device |
Hu Fa-Jie (胡发杰), Jin Peng (金鹏), Wu Yan-Hua (吴艳华), Wang Fei-Fei (王飞飞), Wei Heng (魏恒), Wang Zhan-Guo (王占国) |
Key Laboratory of Semiconductor Materials Science and Beijing Key Laboratory of Low-dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract A wide wavelength tuning range swept external-cavity laser using an InAs/GaAs quantum-dot superluminescent diode as a gain device is demonstrated. The tunable filter consists of a polygon scanner and a grating in Littrow telescope-less configuration. The swept laser generates greater than 54-mW peak output power and up to 33-kHz sweep rate with a sweep range of 150 nm centered at 1155 nm. The effects of injection current and sweep rate on the sweep performance of the swept laser are studied.
|
Received: 08 March 2015
Revised: 02 April 2015
Accepted manuscript online:
|
PACS:
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
78.67.Hc
|
(Quantum dots)
|
|
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
42.79.Ci
|
(Filters, zone plates, and polarizers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61274072) and the National High Technology Research and Development Program of China (Grant No. 2013AA014201). |
Corresponding Authors:
Jin Peng
E-mail: pengjin@semi.ac.cn
|
Cite this article:
Hu Fa-Jie (胡发杰), Jin Peng (金鹏), Wu Yan-Hua (吴艳华), Wang Fei-Fei (王飞飞), Wei Heng (魏恒), Wang Zhan-Guo (王占国) Broadband and high-speed swept external-cavity laser using a quantum-dot superluminescent diode as gain device 2015 Chin. Phys. B 24 104212
|
[1] |
Chinn S R, Swanson E A and Fujimoto J G 1997 Opt. Lett. 22 340
|
[2] |
Myoung S O, Hee S P and Byoung Y K 2003 IEEE Photon. Technol. Lett. 15 266
|
[3] |
Yun S H, Richardson D J and Kim B Y 1998 Opt. Lett. 23 843
|
[4] |
Sanders S T, Wang J, Jeffries J B and Hanson R K 2001 Appl. Opt. 40 4404
|
[5] |
Yun S H, Boudoux C, Tearney G J and Bouma B E 2003 Opt. Lett. 28 1981
|
[6] |
Yun S H, Boudoux C, Pierce M C, de Boer J F, Tearney G J and Bouma B E 2004 IEEE Photon. Technol. Lett. 16 293
|
[7] |
Yun S H, Tearney G J, de Boer J F and Bouma B E 2004 Opt. Express 12 5614
|
[8] |
Oh W Y, Yun S H, Tearney G J and Bouma B E 2005 IEEE Photon. Technol. Lett. 17 678
|
[9] |
Oh W Y, Yun S H, Tearney G J and Bouma B E 2005 Opt. Lett. 30 3159
|
[10] |
Lee E C, de Boer J F, Mujat M, Lim H and Yun S H 2006 Opt. Express 14 4403
|
[11] |
Lim H, de Boer J F, Park B H, Lee E C, Yelin R and Yun S H 2006 Opt. Express 14 5937
|
[12] |
Chong C, Suzuki T, Morosawa A and Sakai T 2008 Opt. Express 16 21105
|
[13] |
Motaghian Nezam S M R 2008 Opt. Lett. 33 1741
|
[14] |
Leung M K K, Mariampillai A, Standish B A, Lee K K C, Munce N R, Vitkin I A and Yang V X D 2009 Opt. Lett. 34 2814
|
[15] |
Lee S W, Song H W, Jung M Y and Kim S H 2011 Opt. Express 19 21227
|
[16] |
Mao Y, Chang S, Murdock E and Flueraru C 2011 Opt. Lett. 36 1990
|
[17] |
Krstajić N, Childs D T D, Matcher S J, Livshits D, Shkolnik A, Krestnikov I and Hogg R A 2011 IEEE Photon. Technol. Lett. 23 739
|
[18] |
Huber R, Wojtkowski M and Fujimoto J G 2006 Opt. Express 14 3225
|
[19] |
Nakazaki Y and Yamashita S 2009 Opt. Express 17 8310
|
[20] |
Lee H D, Lee J H, Jeong M Y and Kim C S 2011 Opt. Express 19 14586
|
[21] |
Takubo Y and Yamashita S 2012 IEEE Photon. Technol. Lett. 24 979
|
[22] |
Takubo Y and Yamashita S 2013 Opt. Express 21 5130
|
[23] |
Sun Z Z, Ding D, Gong Q, Zhou W, Xu B and Wang Z G 1999 Opt. Quantum Electron. 31 1235
|
[24] |
Liu N, Jin P and Wang Z G 2012 Chin. Phys. B 21 117305
|
[25] |
Lü X Q, Jin P and Wang Z G 2010 Chin. Phys. B 19 018104
|
[26] |
Wu J, Lü X Q, Jin P, Meng X Q and Wang Z G 2011 Chin. Phys. B 20 064202
|
[27] |
Liang D C, An Q, Jin P, Li X K, Wei H, Wu J and Wang Z G 2011 Chin. Phys. B 20 108503
|
[28] |
Li X K, Liang D C, Jin P, An Q, Wei H, Wu J and Wang Z G 2012 Chin. Phys. B 21 028102
|
[29] |
Wei H, Jin P, Luo S, Ji H M, Yang T, Li X K, Wu J, An Q, Wu Y H, Chen H M, Wang F F, Wu J and Wang Z G 2013 Chin. Phys. B 22 094211
|
[30] |
Wu J, Jin P, Li X K, Wei H, Wu Y H, Wang F F, Chen H M, Wu J and Wang Z G 2013 Chin. Phys. B 22 104206
|
[31] |
Lü X Q, Jin P, Chen H M, Wu Y H, Wang F F and Wang Z G 2013 Chin. Phys. Lett. 30 118102
|
[32] |
Grundmann M, Stier O, Bognár S, Ribbat C, Heinrichsdorff F and Bimberg D 2000 Phys. Stat. Sol. A 178 255
|
[33] |
Huber R, Wojtkowski M, Taira K, Fujimoto J and Hsu K 2005 Opt. Express 13 3513"
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|