Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 103201    DOI: 10.1088/1674-1056/24/10/103201
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

The ac Stark shifts of the terahertz clock transitions of barium

Yu Geng-Hua (余庚华)a, Geng Ying-Ge (耿鹰鸽)a, Li Long (李隆)a, Zhou Chao (周超)a, Duan Cheng-Bo (段丞博)b, Chai Rui-Peng (柴瑞鹏)a, Yang Yong-Ming (杨永明)a
a School of Science, Xi'an University of Architecture and Technology, Xi'an 710055, China;
b School of Science, Chang'an University,Xi'an 710064, China
Abstract  

Wavelength-dependent AC Stark shifts and magic wavelengths of the terahertz clock transitions between the metastable triplet states 6s5d 3D1 and 6s5d 3D2 are investigated with considering the optical lattice trapping of barium atoms with the linearly polarized laser. The trap depths and the slopes of light shift difference with distinct magic wavelengths of the optical lattices are also discussed in detail. Several potentially suitable working points for the optical lattice trapping laser are recommended and selected from these magic wavelengths.

Keywords:  AC Stark shift      optical lattice      terahertz clock      magic wavelength  
Received:  19 March 2015      Revised:  12 May 2015      Accepted manuscript online: 
PACS:  32.60.+i (Zeeman and Stark effects)  
  32.70.Jz (Line shapes, widths, and shifts)  
  37.10.Jk (Atoms in optical lattices)  
  32.70.Cs (Oscillator strengths, lifetimes, transition moments)  
Fund: 

Project supported by the Science Fund from the Shaanxi Provincial Education Department, China (Grant No. 14JK1402).

Corresponding Authors:  Yu Geng-Hua     E-mail:  genghuayu@aliyun.com

Cite this article: 

Yu Geng-Hua (余庚华), Geng Ying-Ge (耿鹰鸽), Li Long (李隆), Zhou Chao (周超), Duan Cheng-Bo (段丞博), Chai Rui-Peng (柴瑞鹏), Yang Yong-Ming (杨永明) The ac Stark shifts of the terahertz clock transitions of barium 2015 Chin. Phys. B 24 103201

[1] Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W and Ludlow A D 2013 Science 341 1215
[2] Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71
[3] Middelmann T, Falke S, Lisdat C and Sterr U 2012 Phys. Rev. Lett. 109 263004
[4] Battesti R, Cladé P, Guellati-Khélifa S, Schwob C, Grémaud B, Nez F, Julien L and Biraben F 2004 Phys. Rev. Lett. 92 253001
[5] Gupta S, Dieckmann K, Hadzibabic Z and Pritchard D E 2004 Phys. Rev. Lett. 89 140401
[6] Guéna J, Abgrall M, Rovera D, Rosenbusch P, Tobar M E, Laurent P, Clairon A and Bize S 2012 Phys. Rev. Lett. 109 080801
[7] Leefer N, Weber C T, Cingöz A, Torgerson J R and Budker D 2013 Phys. Rev. Lett. 111 060801
[8] Wolf P, Chapelet F, Bize S and Clairon A 2006 Phys. Rev. Lett. 96 060801
[9] Behr J A and Gwinner G 2009 J. Phys. G: Nucl. Part. Phys. 36 3101
[10] Zhang Y X, Liu Q and Shi T Y 2013 Chin. Phys. Lett. 30 043101
[11] Chaudhury S, Merkel S, Herr T, Silberfarb A, Deutsch I H and Jessen P S 2007 Phys. Rev. Lett. 99 163002
[12] Chen Q H and Li P 2014 Chin. Phys. B 23 056701
[13] Mei F, Zhang D W and Zhu S L 2013 Chin. Phys. B 22 116106
[14] Bao A, Chen Y H and Zhang X Z 2013 Chin. Phys. B 22 110309
[15] Katori H, Takamoto M, Pal'chikov V G and Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005
[16] Takamoto M, Hong F L, Higashi R and Katori H 2005 Nature 435 321
[17] Ushijima I, Takamoto M, Das M, Ohkubo T and Katori H 2014 arXiv: 1405.4071v1 [physics.atom-ph]
[18] Le Targat R, Lorini L, Le Coq Y, Zawada M, Guéna J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nagórny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P and Lodewyck J 2013 Nat. Commun. 4 2109
[19] Falke S, Lemke N, Grebing C, Lipphardt B, Weyers S, Gerginov V, Huntemann N, Hagemann C, Al-Masoudi A, Häfner S, Vogt S, Sterr U and Lisdat C 2014 New J. Phys. 16 073023
[20] Zhou M, Chen N, Zhang X H, Huang L Y, Yao M F, Tian J, Gao Q, Jiang H L, Tang H Y and Xu X Y 2013 Chin. Phys. B 22 103701
[21] McFerran J J, Yi L, Mejri S, Di Manno S, Zhang W, Guéna J, Le Coq Y and Bize S 2012 Phys. Rev. Lett. 108 183004
[22] Hachisu H, Miyagishi K, Porsev S G, Derevianko A, Ovsiannikov V D, Pal'chikov V G, Takamoto M and Katori H 2008 Phys. Rev. Lett. 100 053001
[23] Zhou X J, Chen X Z, Chen J B, Wang Y Q and Li J M 2009 Chin. Phys. Lett. 26 090601
[24] Flambaum V V, Dzuba V A and Derevianko A 2008 Phys. Rev. Lett. 101 220801
[25] Beloy K, Derevianko A, Dzuba V A and Flambaum V V 2009 Phys. Rev. Lett. 102 120801
[26] Dzuba V A, Flambaum V V and Benjamin L L 2011 Phys. Rev. A 83 032502
[27] Yu G H, Zhong J Q, Li R B, Wang J and Zhan M S 2011 Chin. Phys. Lett. 28 073201
[28] Yu G H, Xu Q M, Zhou C, Liang L, Li L and Chai R P 2014 Mod. Phys. Lett. B 28 1450183
[29] Strumia F 1972 Metrologia 8 85
[30] Godone A and Novero C 1993 Metrologia 30 163
[31] Godone A, Novero C, Tavella P, Brida G and Levi F 1996 IEEE Trans. Instrum. Meas. 45 261
[32] Chen J B 2009 in Frequency Standards and Metrology: Proceedings of the 7th Symposium, ed. Maleki L (Singapore: World Scientific) pp. 525-531
[33] Zhou X J, Xu X, Chen X Z and Chen J B 2010 Phys. Rev. A 81 012115
[34] Dzuba V A and Ginges J S M 2006 Phys. Rev. A 73 032503
[35] Migdalek J and Baylis W E 1990 Phys. Rev. A 42 6897
[36] De S, Dammalapati U, Jungmann K and Willmann L 2009 Phys. Rev. A 79 041402
[37] De S 2008 "Laser Cooling and Trapping of Barium", Ph. D Thesis (University of Groningen, Groningen, Netherlands, 2008) pp. 104-107
[38] Yu G H, Xu Q M, Zhou C, Duan C B, Li L and Chai R P 2015 Chin. Phys. Lett. 32 033201
[39] Mitroy J, Safronova M S and Clark C W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 202001
[40] Degenhardt C, Stoehr H, Sterr U, Riehle F and Lisdat C 2004 Phys. Rev. A 70 023414
[41] Zheng Y N, Zhou X J, Chen J B and Chen X Z 2006 Chin. Phys. Lett. 23 1687
[42] Zang X R, Zhang T G and Chen J B 2012 Chin. Phys. Lett. 29 090601
[43] Kramida A, Ralchenko Yu, Reader J and NIST ASD Team (2013). NIST Atomic Spectra Database (ver. 5.1), [online]. Available: http://physics.nist.gov/asd [2014, April 11]. National Institute of Standards and Technology, Gaithersburg, MD
[44] Klose J Z, Fuhr J R and Wiese W L 2002 J. Phys. Chem. Ref. Data 31 217
[45] Kulaga D, Migdalek J and Bar O 2001 J. Phys. B: At. Mol. Opt. Phys. 34 4775
[46] Niggli S and Huber M C E 1987 Phys. Rev. A 35 2908
[47] Xu X, Qing B, Chen X Z and Zhou X J 2015 Phys. Lett. A 379 1347
[48] Bloch I 2005 Nat. Phys. 1 23
[49] Chin J K, Miller D E, Liu Y, Stan C, Setiawan W, Sanner C, Xu K and Ketterle W 2006 Nature 443 961
[1] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[2] Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[3] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[4] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[5] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[6] Theoretical calculation of the quadratic Zeeman shift coefficient of the 3P0o clock state for strontium optical lattice clock
Benquan Lu(卢本全), Xiaotong Lu(卢晓同), Jiguang Li(李冀光), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(4): 043101.
[7] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[8] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[9] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[10] Nonlinear dynamical stability of gap solitons in Bose-Einstein condensate loaded in a deformed honeycomb optical lattice
Hongjuan Meng(蒙红娟), Yushan Zhou(周玉珊), Xueping Ren(任雪平), Xiaohuan Wan(万晓欢), Juan Zhang(张娟), Jing Wang(王静), Xiaobei Fan(樊小贝), Wenyuan Wang(王文元), and Yuren Shi(石玉仁). Chin. Phys. B, 2021, 30(12): 126701.
[11] Fulde-Ferrell-Larkin-Ovchinnikov states in equally populated Fermi gases in a two-dimensional moving optical lattice
Jin-Ge Chen(陈金鸽), Yue-Ran Shi(石悦然), Ren Zhang(张仁), Kui-Yi Gao(高奎意), and Wei Zhang(张威). Chin. Phys. B, 2021, 30(10): 100305.
[12] Generating two-dimensional quantum gases with high stability
Bo Xiao(肖波), Xuan-Kai Wang(王宣恺), Yong-Guang Zheng(郑永光), Yu-Meng Yang(杨雨萌), Wei-Yong Zhang(章维勇), Guo-Xian Su(苏国贤), Meng-Da Li(李梦达), Xiao Jiang(江晓), Zhen-Sheng Yuan(苑震生). Chin. Phys. B, 2020, 29(7): 076701.
[13] A transportable optical lattice clock at the National Time Service Center
De-Huan Kong(孔德欢), Zhi-Hui Wang(王志辉), Feng Guo(郭峰), Qiang Zhang(张强), Xiao-Tong Lu(卢晓同), Ye-Bing Wang(王叶兵), Hong Chang(常宏). Chin. Phys. B, 2020, 29(7): 070602.
[14] Peierls-phase-induced topological semimetals in an optical lattice: Moving of Dirac points, anisotropy of Dirac cones, and hidden symmetry protection
Jing-Min Hou(侯净敏). Chin. Phys. B, 2020, 29(12): 120305.
[15] Cyclotron dynamics of neutral atoms in optical lattices with additional magnetic field and harmonic trap potential
Ai-Xia Zhang(张爱霞), Ying Zhang(张莹), Yan-Fang Jiang(姜艳芳), Zi-Fa Yu(鱼自发), Li-Xia Cai(蔡丽霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(1): 010307.
No Suggested Reading articles found!