|
|
The ac Stark shifts of the terahertz clock transitions of barium |
Yu Geng-Hua (余庚华)a, Geng Ying-Ge (耿鹰鸽)a, Li Long (李隆)a, Zhou Chao (周超)a, Duan Cheng-Bo (段丞博)b, Chai Rui-Peng (柴瑞鹏)a, Yang Yong-Ming (杨永明)a |
a School of Science, Xi'an University of Architecture and Technology, Xi'an 710055, China;
b School of Science, Chang'an University,Xi'an 710064, China |
|
|
Abstract Wavelength-dependent AC Stark shifts and magic wavelengths of the terahertz clock transitions between the metastable triplet states 6s5d 3D1 and 6s5d 3D2 are investigated with considering the optical lattice trapping of barium atoms with the linearly polarized laser. The trap depths and the slopes of light shift difference with distinct magic wavelengths of the optical lattices are also discussed in detail. Several potentially suitable working points for the optical lattice trapping laser are recommended and selected from these magic wavelengths.
|
Received: 19 March 2015
Revised: 12 May 2015
Accepted manuscript online:
|
PACS:
|
32.60.+i
|
(Zeeman and Stark effects)
|
|
32.70.Jz
|
(Line shapes, widths, and shifts)
|
|
37.10.Jk
|
(Atoms in optical lattices)
|
|
32.70.Cs
|
(Oscillator strengths, lifetimes, transition moments)
|
|
Fund: Project supported by the Science Fund from the Shaanxi Provincial Education Department, China (Grant No. 14JK1402). |
Corresponding Authors:
Yu Geng-Hua
E-mail: genghuayu@aliyun.com
|
Cite this article:
Yu Geng-Hua (余庚华), Geng Ying-Ge (耿鹰鸽), Li Long (李隆), Zhou Chao (周超), Duan Cheng-Bo (段丞博), Chai Rui-Peng (柴瑞鹏), Yang Yong-Ming (杨永明) The ac Stark shifts of the terahertz clock transitions of barium 2015 Chin. Phys. B 24 103201
|
[1] |
Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W and Ludlow A D 2013 Science 341 1215
|
[2] |
Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71
|
[3] |
Middelmann T, Falke S, Lisdat C and Sterr U 2012 Phys. Rev. Lett. 109 263004
|
[4] |
Battesti R, Cladé P, Guellati-Khélifa S, Schwob C, Grémaud B, Nez F, Julien L and Biraben F 2004 Phys. Rev. Lett. 92 253001
|
[5] |
Gupta S, Dieckmann K, Hadzibabic Z and Pritchard D E 2004 Phys. Rev. Lett. 89 140401
|
[6] |
Guéna J, Abgrall M, Rovera D, Rosenbusch P, Tobar M E, Laurent P, Clairon A and Bize S 2012 Phys. Rev. Lett. 109 080801
|
[7] |
Leefer N, Weber C T, Cingöz A, Torgerson J R and Budker D 2013 Phys. Rev. Lett. 111 060801
|
[8] |
Wolf P, Chapelet F, Bize S and Clairon A 2006 Phys. Rev. Lett. 96 060801
|
[9] |
Behr J A and Gwinner G 2009 J. Phys. G: Nucl. Part. Phys. 36 3101
|
[10] |
Zhang Y X, Liu Q and Shi T Y 2013 Chin. Phys. Lett. 30 043101
|
[11] |
Chaudhury S, Merkel S, Herr T, Silberfarb A, Deutsch I H and Jessen P S 2007 Phys. Rev. Lett. 99 163002
|
[12] |
Chen Q H and Li P 2014 Chin. Phys. B 23 056701
|
[13] |
Mei F, Zhang D W and Zhu S L 2013 Chin. Phys. B 22 116106
|
[14] |
Bao A, Chen Y H and Zhang X Z 2013 Chin. Phys. B 22 110309
|
[15] |
Katori H, Takamoto M, Pal'chikov V G and Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005
|
[16] |
Takamoto M, Hong F L, Higashi R and Katori H 2005 Nature 435 321
|
[17] |
Ushijima I, Takamoto M, Das M, Ohkubo T and Katori H 2014 arXiv: 1405.4071v1 [physics.atom-ph]
|
[18] |
Le Targat R, Lorini L, Le Coq Y, Zawada M, Guéna J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nagórny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P and Lodewyck J 2013 Nat. Commun. 4 2109
|
[19] |
Falke S, Lemke N, Grebing C, Lipphardt B, Weyers S, Gerginov V, Huntemann N, Hagemann C, Al-Masoudi A, Häfner S, Vogt S, Sterr U and Lisdat C 2014 New J. Phys. 16 073023
|
[20] |
Zhou M, Chen N, Zhang X H, Huang L Y, Yao M F, Tian J, Gao Q, Jiang H L, Tang H Y and Xu X Y 2013 Chin. Phys. B 22 103701
|
[21] |
McFerran J J, Yi L, Mejri S, Di Manno S, Zhang W, Guéna J, Le Coq Y and Bize S 2012 Phys. Rev. Lett. 108 183004
|
[22] |
Hachisu H, Miyagishi K, Porsev S G, Derevianko A, Ovsiannikov V D, Pal'chikov V G, Takamoto M and Katori H 2008 Phys. Rev. Lett. 100 053001
|
[23] |
Zhou X J, Chen X Z, Chen J B, Wang Y Q and Li J M 2009 Chin. Phys. Lett. 26 090601
|
[24] |
Flambaum V V, Dzuba V A and Derevianko A 2008 Phys. Rev. Lett. 101 220801
|
[25] |
Beloy K, Derevianko A, Dzuba V A and Flambaum V V 2009 Phys. Rev. Lett. 102 120801
|
[26] |
Dzuba V A, Flambaum V V and Benjamin L L 2011 Phys. Rev. A 83 032502
|
[27] |
Yu G H, Zhong J Q, Li R B, Wang J and Zhan M S 2011 Chin. Phys. Lett. 28 073201
|
[28] |
Yu G H, Xu Q M, Zhou C, Liang L, Li L and Chai R P 2014 Mod. Phys. Lett. B 28 1450183
|
[29] |
Strumia F 1972 Metrologia 8 85
|
[30] |
Godone A and Novero C 1993 Metrologia 30 163
|
[31] |
Godone A, Novero C, Tavella P, Brida G and Levi F 1996 IEEE Trans. Instrum. Meas. 45 261
|
[32] |
Chen J B 2009 in Frequency Standards and Metrology: Proceedings of the 7th Symposium, ed. Maleki L (Singapore: World Scientific) pp. 525-531
|
[33] |
Zhou X J, Xu X, Chen X Z and Chen J B 2010 Phys. Rev. A 81 012115
|
[34] |
Dzuba V A and Ginges J S M 2006 Phys. Rev. A 73 032503
|
[35] |
Migdalek J and Baylis W E 1990 Phys. Rev. A 42 6897
|
[36] |
De S, Dammalapati U, Jungmann K and Willmann L 2009 Phys. Rev. A 79 041402
|
[37] |
De S 2008 "Laser Cooling and Trapping of Barium", Ph. D Thesis (University of Groningen, Groningen, Netherlands, 2008) pp. 104-107
|
[38] |
Yu G H, Xu Q M, Zhou C, Duan C B, Li L and Chai R P 2015 Chin. Phys. Lett. 32 033201
|
[39] |
Mitroy J, Safronova M S and Clark C W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 202001
|
[40] |
Degenhardt C, Stoehr H, Sterr U, Riehle F and Lisdat C 2004 Phys. Rev. A 70 023414
|
[41] |
Zheng Y N, Zhou X J, Chen J B and Chen X Z 2006 Chin. Phys. Lett. 23 1687
|
[42] |
Zang X R, Zhang T G and Chen J B 2012 Chin. Phys. Lett. 29 090601
|
[43] |
Kramida A, Ralchenko Yu, Reader J and NIST ASD Team (2013). NIST Atomic Spectra Database (ver. 5.1), [online]. Available: http://physics.nist.gov/asd [2014, April 11]. National Institute of Standards and Technology, Gaithersburg, MD
|
[44] |
Klose J Z, Fuhr J R and Wiese W L 2002 J. Phys. Chem. Ref. Data 31 217
|
[45] |
Kulaga D, Migdalek J and Bar O 2001 J. Phys. B: At. Mol. Opt. Phys. 34 4775
|
[46] |
Niggli S and Huber M C E 1987 Phys. Rev. A 35 2908
|
[47] |
Xu X, Qing B, Chen X Z and Zhou X J 2015 Phys. Lett. A 379 1347
|
[48] |
Bloch I 2005 Nat. Phys. 1 23
|
[49] |
Chin J K, Miller D E, Liu Y, Stan C, Setiawan W, Sanner C, Xu K and Ketterle W 2006 Nature 443 961
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|