Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 100304    DOI: 10.1088/1674-1056/24/10/100304
GENERAL Prev   Next  

Characterizing the dynamics of quantum discord under phase damping with POVM measurements

Jiang Feng-Jian (蒋峰建), Ye Jian-Feng (叶剑锋), Yan Xin-Hu (闫新虎), Lü Hai-Jiang (吕海江)
School of Information Engineering, Huangshan University, Huangshan 245041, China
Abstract  In the analysis of quantum discord, the minimization of average entropy traditionally involved over orthogonal projective measurements may be attained at more optimal decompositions by using the positive-operator-valued measure (POVM) measurements. Taking advantage of the quantum steering ellipsoid in combination with three-element POVM optimization, we show that, for a family of two-qubit X states locally interacting with Markovian non-dissipative environments, the decay rates of quantum discord show smooth dynamical evolutions without any sudden change. This is in contrast to two-element orthogonal projective measurements, in which case the sudden change of the decay rates of quantum and classical decoherences may be a common phenomenon. Notwithstanding this, we find that a subset of X states (including the Bell diagonal states) involving POVM optimization can still preserve the sudden change character as usual.
Keywords:  quantum steering ellipsoid      quantum discord      decoherence  
Received:  13 February 2015      Revised:  25 May 2015      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  89.70.Cf (Entropy and other measures of information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11305074, 11135002, and 11275083).
Corresponding Authors:  Jiang Feng-Jian, Lü Hai-Jiang     E-mail:  jfjiang@mail.ustc.edu.cn;luhj9404@mail.ustc.edu.cn

Cite this article: 

Jiang Feng-Jian (蒋峰建), Ye Jian-Feng (叶剑锋), Yan Xin-Hu (闫新虎), Lü Hai-Jiang (吕海江) Characterizing the dynamics of quantum discord under phase damping with POVM measurements 2015 Chin. Phys. B 24 100304

[1] Bennett C H, DiVincenzo D P, Fuchs C A, Mor T, Rains E, Shor P W, Smolin J A and Wootters W K 1999 Phys. Rev. A 59 1070
[2] Henderson L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6899
[3] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[4] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[5] Knill E and Laflamme R 1998 Phys. Rev. Lett. 81 5672
[6] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[7] Piani M, Horodecki P and Horodecki R 2008 Phys. Rev. Lett. 100 090502
[8] Cavalcanti D, Aolita L, Boixo S, Modi K, Piani M and Winter A 2011 Phys. Rev. A 83 032324
[9] Zurek W H 2003 Phys. Rev. A 67 012320
[10] Vedral V 2010 Found. Phys. 40 1141
[11] Modi K, Cable H, Williamson M and Vedral V 2011 Phys. Rev. X 1 021022
[12] Horodecki M, Horodecki P, Horodecki R, Oppenheim J, SensDed A, Sen U and Radtke B S 2005 Phys. Rev. A 71 062307
[13] Dakic B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502
[14] Luo S and Fu S 2010 Phys. Rev. A 82: 034302.
[15] Jiang F J, Lu H J, Yan X H and Shi M J 2013 Chin. Phys. B 22 040303
[16] Tang H J, Liu Y M, Chen J L, Ye B L and Zhang Z J 2013 Int. J. Quantum Inform. 9 981
[17] Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501
[18] Fanchini F F, Werlang T, Brasil C A, Arruda L G E and Caldeira A O 2010 Phys. Rev. A 81 052107
[19] Maziero J, Werlang T, Fanchini F F, Celeri L C C and Serra R M 2010 Phys. Rev. A 81 022116
[20] Werlang T, Souza S, Fanchini F F and Boas C J V 2009 Phys. Rev. A 80 024103
[21] Xu G F and Tong D M 2011 Chin. Phys. Lett. 28 060305
[22] Werlang T, Trippe C, Ribeiro G A P and Rigolin G 2010 Phys. Rev. Lett. 105 095702
[23] Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401
[24] Mazzola L, Piilo J and Maniscalco S 2011 Int. J. Quantum Inform. 9 981
[25] Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B and Guo G C 2010 Nat. Commun. 1 7
[26] Aaronson B, Franco R L and Adesso G 2013 Phys. Rev. A 88 012120
[27] Rong X, Wang Z X, Jin F Z, Geng J P, Feng P B, Xu N Y, Wang Y, Ju C Y, Shi M J and Du J F 2012 Phys. Rev. B 86 104425
[28] Rong X, Jin F Z, Wang Z X, Geng J P, Ju C Y, Wang Y, Zhang R M, Duan C K, Shi M J and Du J F 2013 Phys. Rev. B 88 054419
[29] Streltsov A, Kampermann H and BruB D 2011 Phys. Rev. Lett. 107 170502
[30] Shi M J, Jiang F J, Sun C X and Du J F 2011 New J. Phys. 13 073016
[31] Luo S 2008 Phys. Rev. A 77 042303
[32] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[33] Lu X M, Ma J, Xi Z J and Wang X G 2011 Phys. Rev. A 83 012327
[34] Girolami D and Adesso G 2011 Phys. Rev. A 83 052108
[35] Jevtic S, Pusey M, Jennings D and Rudolph T 2014 Phys. Rev. Lett. 113 020402
[36] Chen Q, Zhang C J, Yu S X, Yi X X and Oh C H 2011 Phys. Rev. A 84 042313
[37] Shi M J, Sun C X, Jiang F J and Du J F 2011 Phys. Rev. A 85 064104
[38] Shi M J, Jiang F J and Du J F 2011 q-ph arXiv: 1107.4457v1
[39] Verstraete F, Dehaene J and DeMoor B 2001 Phys. Rev. A 64 010101
[40] Shi M J, Yang W, Jiang F J and Du J F 2011 J. Phys. A: Math. Theor. 44 415304
[41] Verstraete F 2002 "A Study Of Entanglement in Quantum Information Theory", Ph. D. Thesis (Leuven: Katholieke University) (in Belgium)
[1] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[2] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
[3] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[4] Controlling the entropic uncertainty and quantum discord in two two-level systems by an ancilla in dissipative environments
Rong-Yu Wu(伍容玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(3): 037302.
[5] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[6] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[7] The effect of phase fluctuation and beam splitter fluctuation on two-photon quantum random walk
Zijing Zhang(张子静), Feng Wang(王峰), Jie Song(宋杰), Yuan Zhao(赵远). Chin. Phys. B, 2020, 29(2): 020503.
[8] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[9] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[10] A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in neurons
Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新). Chin. Phys. B, 2019, 28(4): 048701.
[11] Physics of quantum coherence in spin systems
Maimaitiyiming Tusun(麦麦提依明·吐孙), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2019, 28(2): 024204.
[12] Quantum discord of two-qutrit system under quantum-jump-based feedback control
Chang Wang(王畅), Mao-Fa Fang(方卯发). Chin. Phys. B, 2019, 28(12): 120302.
[13] Boundary states for entanglement robustness under dephasing and bit flip channels
Hong-Mei Li(李红梅), Miao-Di Guo(郭苗迪), Rui Zhang(张锐), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2019, 28(10): 100302.
[14] Enhancing von Neumann entropy by chaos in spin-orbit entanglement
Chen-Rong Liu(刘郴荣), Pei Yu(喻佩), Xian-Zhang Chen(陈宪章), Hong-Ya Xu(徐洪亚), Liang Huang(黄亮), Ying-Cheng Lai(来颖诚). Chin. Phys. B, 2019, 28(10): 100501.
[15] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
No Suggested Reading articles found!