|
|
Non-Markovianity of the Heisenberg XY spin environment with Dzyaloshinskii-Moriya interaction |
Xiang Jun-Dong (项俊东)a, Qin Li-Guo (秦立国)b, Tian Li-Jun (田立君)a |
a Department of Physics, Shanghai University, Shanghai 200444, China; b Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China |
|
|
Abstract Using the effective non-Markovian measure proposed by Breuer et al. recently, we study the memory effect of a central qubit system coupled to a spin chain environment with Dzyaloshinskii-Moriya interaction in a transverse field. It is discovered that the central qubit system presents different memory effects in different environment phases with the different oscillatory behaviors of the decoherence factor. Moreover, it is revealed that the Dzyaloshinskii-Moriya interaction has a prominent influence on the memory effect of a central qubit system via modifying the amplitude and period of the decoherence factor under certain conditions.
|
Received: 24 February 2014
Revised: 23 April 2014
Accepted manuscript online:
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
75.10.Pq
|
(Spin chain models)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11075101 and 11275119). |
Corresponding Authors:
Tian Li-Jun
E-mail: tianlijun@staff.shu.edu.cn
|
Cite this article:
Xiang Jun-Dong (项俊东), Qin Li-Guo (秦立国), Tian Li-Jun (田立君) Non-Markovianity of the Heisenberg XY spin environment with Dzyaloshinskii-Moriya interaction 2014 Chin. Phys. B 23 110305
|
[1] |
Zurek W H 2003 Rev. Mod. Phys. 75 715
|
[2] |
Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
|
[3] |
Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
|
[4] |
Kubota Y and Nobusada K 2009 J. Phys. Soc. Jpn. 78 114603
|
[5] |
Tang J S, Li C F, Li Y L, Zou X B, Gao G C, Breuer H P, Laine E M and Piilo J 2012 Europhys. Lett. 97 10002
|
[6] |
Lai C W, Maletinsky P, Badolato A and Imamoglu A 2006 Phys. Rev. Lett. 96 167403
|
[7] |
Gardiner C W and Zoller P 2000 Quantum Noise (Berlin: Springer-Verlag)
|
[8] |
Scally M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
|
[9] |
Chin A W, Datta A, Caruso F, Huelga S F and Plenio M B 2010 New. J. Phys. 12 065002
|
[10] |
Chin A W, Huelga S and Plenio M B 2012 Phys. Rev. Lett. 109 233601
|
[11] |
Huelga S, Rivas A and Plenio M B 2012 Phys. Rev. Lett. 108 160402
|
[12] |
Vasile R, Olivares S, Paris M G A and Maniscalco S 2011 Phys. Rev. A 83 042321
|
[13] |
Laine E M, Breuer H P and Piilo J 2012 arXiv:1210.8266
|
[14] |
Huang L Y and Fang M F 2010 Chin. Phys. B 19 090318
|
[15] |
Bellomo B, Franco L and Compagno G 2008 Phys. Rev. A 77 032342
|
[16] |
Lu X M, Wang X G and Sun C P 2010 Phys. Rev. A 82 042103
|
[17] |
Rivas A, Huelga S and Plenio M B 2010 Phys. Rev. Lett. 105 050403
|
[18] |
Wolf M M, Eisert J, Cubitt T S and Cirac J I 2008 Phys. Rev. Lett. 101 150402
|
[19] |
Liu B H, Li L, Huang Y F, Li C F, Guo G C, Laine E M, Breuer H P and Piilo J 2011 Nat. Phys. 7 931
|
[20] |
He Z, Zou J, Li L and Shao B 2011 Phys. Rev. A 83 012108
|
[21] |
Maniscalco S and Petruccione F 2006 Phys. Rev. A 73 012111
|
[22] |
Li G J, Zou J and Shao B 2010 Phys. Rev. A 81 062124
|
[23] |
Tang N, Xu T T and Zeng H S 2013 Chin. Phys. B 22 030304
|
[24] |
Ding B F, Wang X Y, Tang Y F, Mi X W and Zhou H P 2011 Chin. Phys. B 20 060304
|
[25] |
Zheng Y P, Tang N, Wang G Y and Zeng H S 2011 Chin. Phys. B 20 110301
|
[26] |
Apollaro T J G, Franco C D, Plastina F and Paternostro M 2011 Phys. Rev. A 83 032103
|
[27] |
Lorenzo S, Plastina F and Paternostro M 2013 arXiv:1205.4535v2
|
[28] |
Haikka P, Goold J, McEndoo S, Plastina F and Maniscalco S 2012 Phys. Rev. A 85 060101
|
[29] |
Privman V, Vagner I D and Kventel G 1996 arXiv:quan-ph/9707017v2
|
[30] |
Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
|
[31] |
Sachdev S 1999 Quantum Phase Transition (Cambridge: Cambridge University Press)
|
[32] |
Moriya T 1960 Phys. Rev. 120 91
|
[33] |
Kwan M K, Gurkan Z N and Kwek L C 2008 Phys. Rev. A 77 062311
|
[34] |
Tsutsui K, Hosono K and Yokoyama T 2012 Phys. Rev. B 86 155210
|
[35] |
Quan H T, Song Z, Liu X F, Zanardi P and Sun C P 2006 Phys. Rev. Lett. 96 140604
|
[36] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
|
[37] |
Vasile R, Maniscalco S, Paris M G A and Breuer H P 2011 Phys. Rev. A 84 052118
|
[38] |
Yuan Z G, Zhang P and Li S S 2007 Phys. Rev. A 76 042118
|
[39] |
Damski B, Quan H T and Zurek W H 2011 Phys. Rev. A 83 062104
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|