Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 110305    DOI: 10.1088/1674-1056/23/11/110305
GENERAL Prev   Next  

Non-Markovianity of the Heisenberg XY spin environment with Dzyaloshinskii-Moriya interaction

Xiang Jun-Dong (项俊东)a, Qin Li-Guo (秦立国)b, Tian Li-Jun (田立君)a
a Department of Physics, Shanghai University, Shanghai 200444, China;
b Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
Abstract  Using the effective non-Markovian measure proposed by Breuer et al. recently, we study the memory effect of a central qubit system coupled to a spin chain environment with Dzyaloshinskii-Moriya interaction in a transverse field. It is discovered that the central qubit system presents different memory effects in different environment phases with the different oscillatory behaviors of the decoherence factor. Moreover, it is revealed that the Dzyaloshinskii-Moriya interaction has a prominent influence on the memory effect of a central qubit system via modifying the amplitude and period of the decoherence factor under certain conditions.
Keywords:  non-Markovinity      qubit dynamics      spin chain  
Received:  24 February 2014      Revised:  23 April 2014      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  05.45.-a (Nonlinear dynamics and chaos)  
  75.10.Pq (Spin chain models)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11075101 and 11275119).
Corresponding Authors:  Tian Li-Jun     E-mail:  tianlijun@staff.shu.edu.cn

Cite this article: 

Xiang Jun-Dong (项俊东), Qin Li-Guo (秦立国), Tian Li-Jun (田立君) Non-Markovianity of the Heisenberg XY spin environment with Dzyaloshinskii-Moriya interaction 2014 Chin. Phys. B 23 110305

[1] Zurek W H 2003 Rev. Mod. Phys. 75 715
[2] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[3] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
[4] Kubota Y and Nobusada K 2009 J. Phys. Soc. Jpn. 78 114603
[5] Tang J S, Li C F, Li Y L, Zou X B, Gao G C, Breuer H P, Laine E M and Piilo J 2012 Europhys. Lett. 97 10002
[6] Lai C W, Maletinsky P, Badolato A and Imamoglu A 2006 Phys. Rev. Lett. 96 167403
[7] Gardiner C W and Zoller P 2000 Quantum Noise (Berlin: Springer-Verlag)
[8] Scally M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[9] Chin A W, Datta A, Caruso F, Huelga S F and Plenio M B 2010 New. J. Phys. 12 065002
[10] Chin A W, Huelga S and Plenio M B 2012 Phys. Rev. Lett. 109 233601
[11] Huelga S, Rivas A and Plenio M B 2012 Phys. Rev. Lett. 108 160402
[12] Vasile R, Olivares S, Paris M G A and Maniscalco S 2011 Phys. Rev. A 83 042321
[13] Laine E M, Breuer H P and Piilo J 2012 arXiv:1210.8266
[14] Huang L Y and Fang M F 2010 Chin. Phys. B 19 090318
[15] Bellomo B, Franco L and Compagno G 2008 Phys. Rev. A 77 032342
[16] Lu X M, Wang X G and Sun C P 2010 Phys. Rev. A 82 042103
[17] Rivas A, Huelga S and Plenio M B 2010 Phys. Rev. Lett. 105 050403
[18] Wolf M M, Eisert J, Cubitt T S and Cirac J I 2008 Phys. Rev. Lett. 101 150402
[19] Liu B H, Li L, Huang Y F, Li C F, Guo G C, Laine E M, Breuer H P and Piilo J 2011 Nat. Phys. 7 931
[20] He Z, Zou J, Li L and Shao B 2011 Phys. Rev. A 83 012108
[21] Maniscalco S and Petruccione F 2006 Phys. Rev. A 73 012111
[22] Li G J, Zou J and Shao B 2010 Phys. Rev. A 81 062124
[23] Tang N, Xu T T and Zeng H S 2013 Chin. Phys. B 22 030304
[24] Ding B F, Wang X Y, Tang Y F, Mi X W and Zhou H P 2011 Chin. Phys. B 20 060304
[25] Zheng Y P, Tang N, Wang G Y and Zeng H S 2011 Chin. Phys. B 20 110301
[26] Apollaro T J G, Franco C D, Plastina F and Paternostro M 2011 Phys. Rev. A 83 032103
[27] Lorenzo S, Plastina F and Paternostro M 2013 arXiv:1205.4535v2
[28] Haikka P, Goold J, McEndoo S, Plastina F and Maniscalco S 2012 Phys. Rev. A 85 060101
[29] Privman V, Vagner I D and Kventel G 1996 arXiv:quan-ph/9707017v2
[30] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[31] Sachdev S 1999 Quantum Phase Transition (Cambridge: Cambridge University Press)
[32] Moriya T 1960 Phys. Rev. 120 91
[33] Kwan M K, Gurkan Z N and Kwek L C 2008 Phys. Rev. A 77 062311
[34] Tsutsui K, Hosono K and Yokoyama T 2012 Phys. Rev. B 86 155210
[35] Quan H T, Song Z, Liu X F, Zanardi P and Sun C P 2006 Phys. Rev. Lett. 96 140604
[36] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[37] Vasile R, Maniscalco S, Paris M G A and Breuer H P 2011 Phys. Rev. A 84 052118
[38] Yuan Z G, Zhang P and Li S S 2007 Phys. Rev. A 76 042118
[39] Damski B, Quan H T and Zurek W H 2011 Phys. Rev. A 83 062104
[1] Exact surface energy and elementary excitations of the XXX spin-1/2 chain with arbitrary non-diagonal boundary fields
Jia-Sheng Dong(董家生), Pengcheng Lu(路鹏程), Pei Sun(孙佩), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), Kun Hao(郝昆), and Wen-Li Yang(杨文力). Chin. Phys. B, 2023, 32(1): 017501.
[2] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[3] Detection of multi-spin interaction of a quenched XY chain by the average work and the relative entropy
Xiu-Xing Zhang(张修兴), Fang-Jv Li(李芳菊), Kai Wang(王凯), Jing Xue(薛晶), Guang-Wen Huo(霍广文), Ai-Ping Fang(方爱平), and Hong-Rong Li(李宏荣). Chin. Phys. B, 2021, 30(9): 090504.
[4] Exact solution of an integrable quantum spin chain with competing interactions
Jian Wang(王健), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(11): 117501.
[5] Role of the spin anisotropy of the interchain interaction in weakly coupled antiferromagnetic Heisenberg chains
Yuchen Fan(樊宇辰), Rong Yu(俞榕). Chin. Phys. B, 2020, 29(5): 057505.
[6] Applicability of coupling strength estimation for linear chains of restricted access
He Feng(冯赫), Tian-Min Yan(阎天民), Yuhai Jiang(江玉海). Chin. Phys. B, 2020, 29(3): 030305.
[7] Dyson-Maleev theory of an X X Z ferrimagnetic spin chain with single-ion anisotropy
Yu-Ge Chen(陈宇戈), Yin-Xiang Li(李殷翔), Li-Jun Tian(田立君), Bin Chen(陈斌). Chin. Phys. B, 2018, 27(12): 127501.
[8] Exact solutions of an Ising spin chain with a spin-1 impurity
Xuchu Huang(黄旭初). Chin. Phys. B, 2017, 26(3): 037501.
[9] Quantum correlations dynamics of three-qubit states coupled to an XY spin chain:Role of coupling strengths
Shao-Ying Yin(尹少英), Qing-Xin Liu(刘庆欣), Jie Song(宋杰), Xue-Xin Xu(许学新), Ke-Ya Zhou(周可雅), Shu-Tian Liu(刘树田). Chin. Phys. B, 2017, 26(10): 100501.
[10] Optimal quantum parameter estimation of two-qutrit Heisenberg XY chain under decoherence
Hong-ying Yang(杨洪应), Qiang Zheng(郑强), Qi-jun Zhi(支启军). Chin. Phys. B, 2017, 26(1): 010601.
[11] Schwinger-boson approach to anisotropy ferrimagnetic chain with bond alternation
Li Yin-Xiang (李殷翔), Chen Bin (陈斌). Chin. Phys. B, 2015, 24(2): 027502.
[12] Non-Markovianity of a qubit coupled with an isotropic Lipkin-Meshkov-Glick bath
Tian Li-Jun (田立君), Ti Min-Min (提敏敏), Zhai Xiang-Dong (翟向东). Chin. Phys. B, 2015, 24(10): 100305.
[13] Induced modification of geometric phase of a qubit coupled to an XY spin chain by the Dzyaloshinsky–Moriya interaction
Zhang Ai-Ping (张爱萍), Li Fu-Li (李福利). Chin. Phys. B, 2013, 22(3): 030308.
[14] Ferrimagnetism induced by asymmetrical ferromagnetic next-nearest-neighbour exchange interactions in an antiferromagnetic spin-1/2 zigzag chain
Wang Zhong-Long(王忠龙) and Fu Hua-Hua(傅华华) . Chin. Phys. B, 2011, 20(9): 097502.
[15] Scaling of entanglement entropy for spin chain with Dzyaloshinskii–Moriya interaction
Du Long(杜龙),Hou Jing-Min(侯净敏),Ding Jia-Yan(丁伽焱), Zhang Wen-Xin(张文新),Tian Zhi(田志),and Chen Ting-Ting(陈婷婷) . Chin. Phys. B, 2011, 20(2): 020306.
No Suggested Reading articles found!