Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 080304    DOI: 10.1088/1674-1056/25/8/080304
GENERAL Prev   Next  

Quantum speed limits of a qubit system interacting with a nonequilibrium environment

Zhi He(贺志), Chun-Mei Yao(姚春梅), Li Li(李莉), Qiong Wang(王琼)
College of Physics and Electronics, Hunan University of Arts and Science, Changde 415000, China
Abstract  The speed of evolution of a qubit undergoing a nonequilibrium environment with spectral density of general ohmic form is investigated. First we reveal non-Markovianity of the model, and find that the non-Markovianity quantified by information backflow of Breuer et al. [Phys. Rev. Lett. 103 210401 (2009)] displays a nonmonotonic behavior for different values of the ohmicity parameter s in fixed other parameters and the maximal non-Markovianity can be achieved at a specified value s. We also find that the non-Markovianity displays a nonmonotonic behavior with the change of a phase control parameter. Then we further discuss the relationship between quantum speed limit (QSL) time and non-Markovianity of the open-qubit system for any initial states including pure and mixed states. By investigation, we find that the QSL time of a qubit with any initial states can be expressed by a simple factorization law: the QSL time of a qubit with any qubit-initial states are equal to the product of the coherence of the initial state and the QSL time of maximally coherent states, where the QSL time of the maximally coherent states are jointly determined by the non-Markovianity, decoherence factor and a given driving time. Moreover, we also find that the speed of quantum evolution can be obviously accelerated in the wide range of the ohmicity parameter, i.e., from sub-Ohmic to Ohmic and super-Ohmic cases, which is different from the thermal equilibrium environment case.
Keywords:  quantum speed limits      non-Markovianity      nonequilibrium environment  
Received:  28 February 2016      Revised:  03 May 2016      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.-a (Quantum information)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 61505053 and 61475045), the Natural Science Foundation of Hunan Province, China(Grant No. 2015JJ3092), the School Foundation from the Hunan University of Arts and Science (Grant No. 14ZD01), the Fund from the Key Laboratory of Photoelectric Information Integration and Optical Manufacturing Technology of Hunan Province, China, and the Construction Program of the Key Discipline in Hunan University of Arts and Science (Optics).
Corresponding Authors:  Zhi He     E-mail:  hz9209@126.com

Cite this article: 

Zhi He(贺志), Chun-Mei Yao(姚春梅), Li Li(李莉), Qiong Wang(王琼) Quantum speed limits of a qubit system interacting with a nonequilibrium environment 2016 Chin. Phys. B 25 080304

[1] Bekenstein J D 1981 Phys. Rev. Lett. 46 623
[2] Lloyd S 2000 Nature 406 1047
[3] Yung M H 2006 Phys. Rev. A 74 030303
[4] Giovanetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
[5] Alipour S, Mehboudi M and Rezakhani A T 2014 Phys. Rev. Lett. 112 120405
[6] Caneva T, Murphy M, Calarco T, Fazio R, Montangero S and Giovannetti V and Santoro G E 2009 Phys. Rev. Lett. 103 240501
[7] Deffner S and Lutz E 2012 Phys. Rev. Lett. 105 170402
[8] Mandelstam L and Tamm I 1945 J. Phys. (USSR) 9 249
[9] Margolus N and Levitin L B 1998 Physica D (Amsterdam) 120 188
[10] Pfeifer P 2008 Phys. Rev. Lett. 70 3365
[11] Pfeifer P and Frohlich J 1995 Rev. Mod. Phys. 67 759
[12] Giovannetti V, Lloyd S and Maccone L 2003 Phys. Rev. A 67 052109
[13] Luo S 2004 Physica D 189 1
[14] Jones P J and Kok P 2010 Phys. Rev. A 82 022107
[15] Zwierz M 2012 Phys. Rev. A 86 016101
[16] Deffner S and Lutz E 2013 J. Phys. A:Math. Theor. 46 335302
[17] Taddei M M, Escher B M, Davidovich L and de Matos Filho R L 2013 Phys. Rev. Lett. 110 050402
[18] del Campo A, Egusquiza I L, Plenio M B and Huelga S F 2013 Phys. Rev. Lett. 110 050403
[19] Deffner S and Lutz E 2013 Phys. Rev. Lett. 111 010402
[20] Cimmarusti A D, Yan Z, Patterson B D, Corcos L P, Orozco L A and Deffner S 2015 Phys. Rev. Lett. 114 233602
[21] Zhang Y J, Han W, Xia Y J, Cao J P and Fan H 2014 Sci. Rep. 4 4890
[22] Sun Z, Liu J, Ma J and Wang X 2015 Sci. Rep. 5 8444
[23] Xu Z Y 2015 arXiv:1510.00101v2[quant-ph]
[24] Jing J, Wu L A and del Campo A 2015 arXiv:1510.01106v2[quant-ph]
[25] Xu Z Y and Zhu S Q 2014 Chin. Phys. Lett. 31 020301
[26] Xu Z Y, Luo S, Yang W L, Liu C and Zhu S Q 2014 Phys. Rev. A 89 012307
[27] Zhang Y J, Han W, Xia Y J, Cao J P and Fan H 2015 Phys. Rev. A 91 032112
[28] Liu C, Xu Z Y and Zhu S Q 2015 Phys. Rev. A 91 022102
[29] Marvian I and Lidar D A 2015 Phys. Rev. Lett. 115 210402
[30] Marvian I, Spekkens R W and Zanardi P 2016 Phys. Rev. A 93 052331
[31] Han W, Jiang K X, Zhang Y J and Xia Y J 2015 Chin. Phys. B 24 120304)
[32] Liu H B, Yang W L, An J H and Xu Z Y 2016 Phys. Rev. A 93 020105(R)
[33] Martens C C 2010 J. Chem. Phys. 133 241101
[34] Marten C C 2012 J. Phys. B:At. Mol. Opt. Phys. 45 154008
[35] Lombardo F C and Villar P I 2013 Phys. Rev. A 87 032338
[36] Lombardo F C and Villar P I 2015 Phys. Rev. A 91 042111
[37] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
[38] Palma G M, Suominen K and Ekert A 1996 Proc. R. Soc. London A 452 567
[39] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford:Oxford University Press)
[40] Goan H S, Jian C C and Chen P W 2010 Phys. Rev. A 82 012111
[41] Morozov V G, Mathey S and Ropke G 2012 Phys. Rev. A 85 022101
[42] Haikka P, Johnson T H and Maniscalco S 2013 Phys. Rev. A 87 010103(R)
[43] Rivas A, Huelga S F and Plenio M B 2010 Phys. Rev. Lett. 105 050403
[44] Lu X M, Wang X G and Sun C P 2010 Phys. Rev. A 82 042103
[45] Luo S, Fu S and Song H 2012 Phys. Rev. A 86 044101
[46] Zeng H S, Tang N, Zheng Y P and Wang G Y 2011 Phys. Rev. A 84 032118
[47] He Z, Zou J, Li L and Shao B 2011 Phys. Rev. A 83 012108
[48] Tian L J Ti M M and Zhai X D 2015 Chin. Phys. B 24 100305
[49] Fan Z L, Ren Y K and Zeng H S 2016 Chin.Phys. B 25 010303
[50] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press)
[51] Audenaert K M R 2014 Quantum Inf. Comput. 14 31
[52] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[53] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 012108
[54] Konrad T, de Melo F, Tiersch M, Kasztelan C, Aragão A and Buchleitner A 2008 Nat. Phys. 4 99
[55] Addis C, Bylicka B, Chruściński D and Maniscalco S 2014 Phys. Rev. A 90 052103
[56] Addis C, Brebner G, Haikka P and Maniscalco S 2014 Phys. Rev. A 89 024101
[57] Zhang Y J, Han W, Xia Y J, Yu J M and Fan H 2015 Sci. Rep. 5 13359
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Quantum speed limit of the double quantum dot in pure dephasing environment under measurement
Zhenyu Lin(林振宇), Tian Liu(刘天), Zongliang Li(李宗良), Yanhui Zhang(张延惠), and Kang Lan(蓝康). Chin. Phys. B, 2022, 31(7): 070307.
[3] Generating Kerr nonlinearity with an engineered non-Markovian environment
Fei-Lei Xiong(熊飞雷), Wan-Li Yang(杨万里), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(4): 040302.
[4] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[5] Dynamics of two levitated nanospheres nonlinearly coupling with non-Markovian environment
Xun Li(李逊), Biao Xiong(熊标), Shilei Chao(晁石磊), Jiasen Jin(金家森), Ling Zhou(周玲). Chin. Phys. B, 2019, 28(5): 050302.
[6] Non-Markovian speedup dynamics control of the damped Jaynes-Cummings model with detuning
Kai Xu(徐凯), Wei Han(韩伟), Ying-Jie Zhang(张英杰), Heng Fan(范桁). Chin. Phys. B, 2018, 27(1): 010302.
[7] Entanglement and non-Markovianity of a multi-level atom decaying in a cavity
Zi-Long Fan(范子龙), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生). Chin. Phys. B, 2016, 25(1): 010303.
[8] Rotation of Bloch sphere induced by Lamb shift in open two-level systems
Wang Guo-You (王国友), Tang Ning (唐宁), Liu Ying (刘颖), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2015, 24(5): 050302.
[9] Non-Markovianity of a qubit coupled with an isotropic Lipkin-Meshkov-Glick bath
Tian Li-Jun (田立君), Ti Min-Min (提敏敏), Zhai Xiang-Dong (翟向东). Chin. Phys. B, 2015, 24(10): 100305.
[10] Entanglement and non-Markovianity of a spin-S system in a dephasing environment
Fan Zi-Long (范子龙), Tian Jing (田晶), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2014, 23(6): 060303.
[11] Comparison between non-Markovian dynamics with and without rotating wave approximation
Tang Ning (唐宁), Xu Tian-Tian (徐甜甜), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2013, 22(3): 030304.
[12] Distribution of non-Markovian intervals for open qubit systems
Zheng Yan-Ping(郑艳萍), Tang Ning(唐宁), Wang Guo-You(王国友), and Zeng Hao-Sheng(曾浩生) . Chin. Phys. B, 2011, 20(11): 110301.
No Suggested Reading articles found!