Special Issue:
TOPICAL REVIEW — Silicene
|
|
|
Silicene transistors–A review |
Quhe Ru-Ge (屈贺如歌)a c d, Wang Yang-Yang (王洋洋)a e, Lü Jin (吕劲)a b |
a State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871, China;
b Collaborative Innovation Center of Quantum Matter, Beijing 100871, China;
c State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China;
d School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
e Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA |
|
|
Abstract Free standing silicene is a two-dimensional silicon monolayer with a buckled honeycomb lattice and a Dirac band structure. Ever since its first successful synthesis in the laboratory, silicene has been considered as an option for post-silicon electronics, as an alternative to graphene and other two-dimensional materials. Despite its theoretical high carrier mobility, the zero band gap characteristic makes pure silicene impossible to use directly as a field effect transistor (FET) operating at room temperature. Here, we first review the theoretical approaches to open a band gap in silicene without diminishing its excellent electronic properties and the corresponding simulations of silicene transistors based on an opened band gap. An all-metallic silicene FET without an opened band gap is also introduced. The two chief obstacles for realization of a silicene transistor are silicene's strong interaction with a metal template and its instability in air. In the final part, we briefly describe a recent experimental advance in fabrication of a proof-of-concept silicene device with Dirac ambipolar charge transport resembling a graphene FET, fabricated via a growth-transfer technique.
|
Received: 18 March 2015
Revised: 26 April 2015
Accepted manuscript online:
|
PACS:
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
61.46.-w
|
(Structure of nanoscale materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274016, 11474012, and 1207141) and the National Basic Research Program of China (Grant Nos. 2013CB932604 and 2012CB619304). |
Corresponding Authors:
Lü Jin
E-mail: jinglu@pku.edu.cn
|
Cite this article:
Quhe Ru-Ge (屈贺如歌), Wang Yang-Yang (王洋洋), Lü Jin (吕劲) Silicene transistors–A review 2015 Chin. Phys. B 24 088105
|
[1] |
Du X, Skachko I, Barker A and Andrei E Y 2008 Nat. Nanotech. 3 491
|
[2] |
Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A and Geim A K 2008 Phys. Rev. Lett. 100 016602
|
[3] |
Schwierz F 2010 Nat. Nanotech. 5 487
|
[4] |
Castro E V, Novoselov K S, Morozov S V, Peres N M R, dos Santos J M B L, Nilsson J, Guinea F, Geim A K and Neto A H C 2007 Phys. Rev. Lett. 99 216802
|
[5] |
Quhe R G, Zheng J, Luo G, Liu Q, Qin R, Zhou J, Yu D, Nagase S, Mei W N, Gao Z and Lu J 2012 NPG Asia Mater. 4 e6
|
[6] |
Tian X, Xu J and Wang X 2010 J. Phys. Chem. B 114 11377
|
[7] |
Zhang W, Lin C T, Liu K K, Tite T, Su C Y, Chang C H, Lee Y H, Chu C W, Wei K H, Kuo J L and Li L J 2011 ACS Nano 5 7517
|
[8] |
Xia F, Farmer D B, Lin Y M and Avouris P 2010 Nano Lett. 10 715
|
[9] |
Li X, Mullen J T, Jin Z, Borysenko K M, Buongiorno Nardelli M and Kim K W 2013 Phys. Rev. B 87 115418
|
[10] |
Ni Z Y, Liu Q H, Tang K C, Zheng J X, Zhou J, Qin R, Gao Z X, Yu D P and Lu J 2012 Nano Lett. 12 113
|
[11] |
Pan F, Wang Y, Jiang K, Ni Z, Ma J, Zheng J, Quhe R G, Shi J, Yang J, Chen C and Lu J 2015 Sci. Rep. 5 9075
|
[12] |
Quhe R G, Fei R, Liu Q, Zheng J, Li H, Xu C, Ni Z, Wang Y, Yu D, Gao Z and Lu J 2012 Sci. Rep. 2 853
|
[13] |
Drummond N D, Zólyomi V and Fal'ko V I 2012 Phys. Rev. B 85 075423
|
[14] |
Ni Z Y, Zhong H X, Jiang X H, Quhe R G, Luo G F, Wang Y Y, Ye M, Yang J B, Shi J J and Lu J 2014 Nanoscale 6 7609
|
[15] |
Dvorak M, Oswald W and Wu Z 2013 Sci. Rep. 3 2289
|
[16] |
Dvorak M and Wu Z 2014 Phys. Rev. B 90 115415
|
[17] |
Pedersen T G, Flindt C, Pedersen J, Mortensen N A, Jauho A P and Pedersen K 2008 Phys. Rev. Lett. 100 136804
|
[18] |
Gao N, Li J C and Jiang Q 2014 Chem. Phys. Lett. 592 222
|
[19] |
Gao N, Li J C and Jiang Q 2014 Phys. Chem. Chem. Phys. 16 11673
|
[20] |
Li L, Wang X, Zhao X and Zhao M 2013 Phys. Lett. A 377 2628
|
[21] |
Liu H, Gao J and Zhao J 2013 J. Phys. Chem. C 117 10353
|
[22] |
Quhe R G, Yuan Y K, Zheng J X, Wang Y Y, Ni Z Y, Shi J J, Yu D P, Yang J B and Lu J 2014 Sci. Rep. 4 5476
|
[23] |
Neek-Amal M, Sadeghi A, Berdiyorov G R and Peeters F M 2013 Appl. Phys. Lett. 103 261904
|
[24] |
Li X, Wu S, Zhou S and Zhu Z 2014 Nanoscale Res. Lett. 9 110
|
[25] |
Kaloni T P, Tahir M and Schwingenschlogl U 2013 Sci. Rep. 3 3192
|
[26] |
Kamal C, Chakrabarti A and Banerjee A 2014 Phys. Lett. A 378 1162
|
[27] |
Liu W, Wang Z F, Shi Q W, Yang J and Liu F 2009 Phys. Rev. B 80 233405
|
[28] |
Yu B, Chang L, Ahmed S, Wang H, Bell S, Yang C Y, Tabery C, Ho C, Xiang Q, King T J, Bokor J, Hu C, Lin M R and Kyser D 2002 IEEE Int. Electron Devices Meeting, December 8–11, 2002, San Francisco, CA, USA, p. 251
|
[29] |
Doris B, Ieong M, Zhu T, Zhang Y, Steen M, Natzle W, Callegari S, Narayanan V, Cai J and Ku S 2003 IEEE Int. Electron Devices Meeting, December 8–10, 2003, Washington, DC, USA, p. 27.3.1
|
[30] |
Franklin A D, Luisier M, Han S J, Tulevski G, Breslin C M, Gignac L, Lundstrom M S and Haensch W 2012 Nano Lett. 12 758
|
[31] |
Wang Y Y, Ni Z Y, Liu Q H, Quhe R G, Zheng J X, Ye M, Yu D P, Shi J J, Yang J B, Li J and Lu J 2015 Adv. Funct. Mater. 25 68
|
[32] |
Li H, Wang L, Liu Q, Zheng J, Mei W N, Gao Z, Shi J and Lu J 2012 Eur. Phys. J. B 85 1
|
[33] |
Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A and Avouris P 2010 Science 327 662
|
[34] |
Lin Y M, Jenkins K A, Valdes-Garcia A, Small J P, Farmer D B and Avouris P 2009 Nano Lett. 9 422
|
[35] |
Yan Q, Huang B, Yu J, Zheng F, Zang J, Wu J, Gu B L, Liu F and Duan W 2007 Nano Lett. 7 1469
|
[36] |
Franklin A D and Chen Z 2010 Nat. Nanotech. 5 858
|
[37] |
Colinge J P, Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I, Razavi P, O'Neill B, Blake A, White M, Kelleher A M, McCarthy B and Murphy R 2010 Nat. Nanotechol. 5 225
|
[38] |
Sacconi F, Persson M P, Povolotskyi M, Latessa L, Pecchia A, Gagliardi A, Balint A, Fraunheim T and Di Carlo A 2007 J. Comput. Electron. 6 329
|
[39] |
Yi K S, Trivedi K, Floresca H C, Yuk H, Hu W and Kim M J 2011 Nano Lett. 11 5465
|
[40] |
Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A and Akinwande D 2015 Nat. Nanotech. 10 227
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|