Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 088101    DOI: 10.1088/1674-1056/24/8/088101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Theoretical study of the effects of vacancy and oxygen impurity on Ti2GaC

Chen Jun-Jun (陈俊俊)a, Duan Ji-Zheng (段济正)b, Zhao Da-Qiang (赵大强)a, Zhang Jian-Rong (张建荣)b, Yang Yang (杨阳)a, Duan Wen-Shan (段文山)a
a College of Physics and Electronics, Northwest Normal University (NWNU), Lanzhou 730070, China;
b Joint Laboratory of Atomic and Molecular Physics of NWNU & IMPCAS, Institute of Modern Physics, Chinese Academy of Sciences (IMPCAS), Lanzhou 730000, China
Abstract  This paper presents the mono-vacancy formation and migration energies of each element Ti, Ga, and C in the MAX phase Ti2GaC, which are obtained by first principles calculations. We also calculate the formation energies of oxygen substituting for Ti, Ga, and C and two formation energies of oxygen interstitial in different sites. The results show that the formation energy of oxygen substituting for Ti is the highest, and the formation energies of the O substitution for Ga atoms decrease as the oxygen concentration increases. The two different formation energies of one oxygen interstitial show that the stable site for the oxygen interstitial is at the center of the triangle composed by three Ga atoms. The effects of vacancy, oxygen substitution, and the interstitial on the electronic properties of Ti2GaC are also discussed in light of the density of states and the electron charge density.
Keywords:  MAX phase      first principles      vacancy      oxygen impurity  
Received:  23 December 2014      Revised:  10 February 2015      Accepted manuscript online: 
PACS:  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
  63.20.dk (First-principles theory)  
  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
Fund: Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant No. 2014GB104002), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA03030100), and the National Natural Science Foundation of China (Grant Nos. 11275156 and 11304324).
Corresponding Authors:  Duan Wen-Shan     E-mail:  duanws@nwnu.edu.cn

Cite this article: 

Chen Jun-Jun (陈俊俊), Duan Ji-Zheng (段济正), Zhao Da-Qiang (赵大强), Zhang Jian-Rong (张建荣), Yang Yang (杨阳), Duan Wen-Shan (段文山) Theoretical study of the effects of vacancy and oxygen impurity on Ti2GaC 2015 Chin. Phys. B 24 088101

[1] Barsoum M W 2000 Prog. Solid State Chem. 28 201
[2] Music D and Schneider J M 2007 JOM 59 60
[3] Eklund P, Beckers M, Jansson U, Högberg H and Hultman L 2010 Thin Solid Films 518 1851
[4] Barsoum M W and Radovic M 2011 Ann. Rev. Mater. Res. 41 195
[5] Wang J Y and Zhou Y C 2009 Ann. Rev. Mater. Res. 39 415
[6] Weber W J, Wang L M and Yu N 1996 Nucl. Instrum. Method B 116 322
[7] Riley D P and Kisi E H 2007 J. Am. Ceram. Soc. 90 2231
[8] Nappè J C, Monnet I, Grosseau Ph, Audubert F, Guilhot B, Beauvy M, Benabdesselam M and Thomè L 2011 J. Nucl. Mater. 409 53
[9] Buchholt K, Ghandi R, Domeij M, Zetterling C M, Lu J, Eklund P, Hultman L and Spetz A L 2011 Appl. Phys. Lett. 98 042108
[10] Wang Z C, Saito M, Tsukimoto S and Ikuara Y 2009 Adv. Mater. 21 4966
[11] Sun Z M, Hashimoto H, Tian W and Zou Y 2010 Int. J. Appl. Ceram. Technol. 7 704
[12] Etzkorn J, Ade M, Kotzott D, Kleczek M and Hillebrecht H 2009 J. Solid State Chem. 182 995
[13] Bouhemadou A and Khenata R 2007 J. Appl. Phys. 102 043528
[14] Music D, Ahuja R and Schneider J M 2007 Surf. Sci. 601 896
[15] Hug G 2006 Phys. Rev. B 74 184113
[16] MO Y, Rulis P and Ching W Y 2012 Phys. Rev. B 86 165122
[17] Kang D B 2013 J. Korean Chem. Soc. 57 35
[18] Duong T, Gibbons S, Kinra R and Arróyave R 2011 J. Appl. Phys. 110 093504
[19] Iwaszuk A, Mulheran P A and Nolan M 2013 J. Mater. Chem. A 1 2515
[20] Akimov A I, Tkachenko T M and Lebedev S A 2006 Inorg. Mater. 42 331
[21] Music D, Sun Z, Ahujav R and Schneider J M 2007 Surf. Sci. 601 896
[22] Sun X, Gu Y S, Wang X Q and Zhang Y 2012 Chin. J. Chem. Phys. 25 261
[23] Dai G Z, Dai Y H, Xu T L, Wang J Y, Zhao Y Y, Chen J N and Liu Q 2014 Acta Phys. Sin. 63 123101 (in Chinese)
[24] Liao T, Wang J Y and Zhou Y C 2008 Scr. Mater. 59 854
[25] Liu B, Wang J Y, Li F Z and Zhou Y C 2009 Appl. Phys. Lett. 94 181906
[26] Music D, Ahuja R and Schneider J M 2005 Appl. Phys. Lett. 86 031911
[27] Baben M, Shang L, Emmerlich J and Schneider J M 2012 Acta Mater. 60 4810
[28] Song G M, Pei Y T, Sloof W G, Li S B, De Hosson J T M and Van der Zwaag S 2008 Scr. Mater. 58 13
[29] Yang H J, Pei Y T, Rao J C, De Hosson J T M, Li S B and Song G M 2011 Scr. Mater. 65 135
[30] Sigumonrong D P, Zhang J, Zhou Y C, Music D, Emmerlich J, Mayer J and Schneider J M 2011 Scr. Mater. 64 347
[31] Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[32] Zhao S J, Xue J M, Wang Y G and Huang Q 2014 J. Appl. Phys. 115 023503
[33] Middleburgh S C, Lumpkin G R and Riley D 2013 J. Am. Ceram. Soc. 96 3196
[34] Zhao S J, Xue J M, Wang Y G and Huang Q 2014 J. Phys. Chem. Solids 75 384
[35] Xu Y G, Ou X D and Rong X M 2014 Mater. Lett. 116 322
[36] Oba F, Togo A, Tanaka I, Paier J and Kresse G 2008 Phys. Rev. B 77 245202
[37] Van de Walle C G and Neugebauer J 2004 J. Appl. Phys. 95 3851
[38] Sun X, Guo Y S, Wang X Q and Zhang Y 2012 Chin. J. Chem. Phys. 25 261
[39] Eklund P, Dahlqvist M, Tengstrand O, Hultman L, Lu J, Nedfors N, Jansson U and Rosèn J 2012 Phys. Rev. Lett. 109 035502
[40] Chen J J, Duan J Z, Wang C L, Duan W S and Yang L 2014 Comput. Mater. Sci. 82 521
[41] Shein I R and Ivanovskill A L 2013 Physica B 410 42
[42] Ali M S, Parvin F, Islam A K M A and Hossain M A 2013 Comput. Mater. Sci. 74 119
[43] Zhu J F, Jiang H, Wang F, Yang C H and Xiao D 2014 J. Eur. Ceram. Soc. 34 4137
[44] Tsuchiya T, Yusa H and Tsuchiya J 2007 Phys. Rev. B 76 174108
[45] Swamy V 2014 Phys. Chem. Phys. 16 18156
[46] Yeh C L and Yang W J 2014 J. Alloys Compd. 608 292
[47] Manzar A, Murtaza G, Khenata R, Masood Yousaf, Muhammad S and Hayatullah 2014 Chin. Phys. Lett. 31 067401
[48] Hou Q Y, Guo S Q and Zhao C W 2014 Acta Phys. Sin. 63 147101 (in Chinese)
[49] Qiu P Y 2014 Chin. Phys. Lett. 31 066201
[50] Jia Y F, Shu X L, Xie Y and Chen Z Y 2014 Chin. Phys. B 23 076105
[1] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[2] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[3] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[4] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[5] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
[6] Intrinsic V vacancy and large magnetoresistance in V1-δSb2 single crystal
Yong Zhang(张勇), Xinliang Huang(黄新亮), Jinglei Zhang(张警蕾), Wenshuai Gao(高文帅), Xiangde Zhu(朱相德), and Li Pi(皮雳). Chin. Phys. B, 2022, 31(3): 037102.
[7] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[8] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[9] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[10] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[11] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[12] Single-channel vector magnetic information detection method based on diamond NV color center
Qin-Qin Wang(王琴琴), Rui-Rong Wang(王瑞荣), Jin-Ping Liu(刘金萍), Shao-Zhuo Lin(林绍卓), Liang-Wei Wu(武亮伟), Hao Guo(郭浩), Zhong-Hao Li(李中豪), Huan-Fei Wen(温焕飞), Jun Tang(唐军), Zong-Min Ma(马宗敏), and Jun Liu (刘俊). Chin. Phys. B, 2021, 30(8): 080701.
[13] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[14] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
[15] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
No Suggested Reading articles found!