CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Accurate calculations of the high-pressure elastic constants based on the first-principles |
Wang Chen-Ju (王臣菊)a, Gu Jian-Bing (顾建兵)b, Kuang Xiao-Yu (邝小渝)a c, Yang Xiang-Dong (杨向东)a |
a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; b College of Physical Science and Technology, Sichuan University, Chengdu 610064, China; c International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, China |
|
|
Abstract The energy term corresponding to the first order of the strain in Taylor series expansion of the energy with respect to strain is always ignored when high-pressure elastic constants are calculated. Whether the modus operandi would affect the results of the high-pressure elastic constants is still unsolved. To clarify this query, we calculate the high-pressure elastic constants of tantalum and rhenium when the energy term mentioned above is considered and neglected, respectively. Results show that the neglect of the energy term corresponding to the first order of the strain indeed would influence the veracity of the high-pressure elastic constants, and this influence becomes larger with pressure increasing. Therefore, the energy term corresponding to the first-order of the strain should be considered when the high-pressure elastic constants are calculated.
|
Received: 14 December 2014
Revised: 26 February 2015
Accepted manuscript online:
|
PACS:
|
62.20.D-
|
(Elasticity)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.15.Nc
|
(Total energy and cohesive energy calculations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11274235), the Young Scientist Fund of the National Natural Science Foundation of China (Grant No. 11104190), and the Doctoral Education Fund of Education Ministry of China (Grant Nos. 20100181110086 and 20110181120112). |
Corresponding Authors:
Kuang Xiao-Yu
E-mail: scu_kxy@163.com
|
Cite this article:
Wang Chen-Ju (王臣菊), Gu Jian-Bing (顾建兵), Kuang Xiao-Yu (邝小渝), Yang Xiang-Dong (杨向东) Accurate calculations of the high-pressure elastic constants based on the first-principles 2015 Chin. Phys. B 24 086201
|
[1] |
Li J, Van Vliet K J, Zhu T, Yip S and Suresh S 2002 Nature 418 307
|
[2] |
Binggeli N and Chelikowsky J R 1992 Phys. Rev. Lett. 69 2220
|
[3] |
Binggeli N and Chelikowsky J R 1993 Phys. Rev. Lett. 71 2675
|
[4] |
Zhang W and Tong P Q 2013 Chin. Phys. B 22 066201
|
[5] |
Yang Z J, Guo Y D, Linghu R F and Yang X D 2012 Chin. Phys. B 21 036301
|
[6] |
Zhang L, Ji G F, Zhao F and Gong Z Z 2011 Chin. Phys. B 20 047102
|
[7] |
Sha X W and Cohen R E 2010 Phys. Rev. B 81 094105
|
[8] |
Asker C, Vitos L and Abrikosov I A 2009 Phys. Rev. B 79 214112
|
[9] |
Zhu J, Yu J X, Wang Y J, Chen X R and Jing F Q 2008 Chin. Phys. B 17 2216
|
[10] |
Chang J, Chen X R, Zhang W and Zhu J 2008 Chin. Phys. B 17 1377
|
[11] |
Hao Y J, Cheng Y, Wang Y J and Chen X R 2007 Chin. Phys. 16 217
|
[12] |
Lu L Y, Chen X R, Yu B R and Gou Q Q 2006 Chin. Phys. 15 802
|
[13] |
Gao X P, Jiang Y H, Liu Y Z, Zhou R and Feng J 2014 Chin. Phys. B 23 097704
|
[14] |
Li Z L and Cheng X L 2014 Chin. Phys. B 23 046201
|
[15] |
Huang N X, Lü T Q, Zhang R and Cao W W 2014 Chin. Phys. B 23 117704
|
[16] |
Yang C Y and Zhang R 2014 Chin. Phys. B 23 026301
|
[17] |
Zhao Y X, Zeng X and Chen C P 2014 Chin. Phys. B 23 030202
|
[18] |
Bercegeay C and Bernard S 2005 Phys. Rev. B 72 214101
|
[19] |
Gulseren O and Cohen R E 2002 Phys. Rev. B 65 064103
|
[20] |
Page Y L and Saxe P 2001 Phys. Rev. B 63 174103
|
[21] |
Beckstein O, Beckstein J E, Hart G L W and Pankratov O 2001 Phys. Rev. B 63 134112
|
[22] |
Steinle-Neumann G, Steinle-Neumann L and Cohen R E 1999 Phys. Rev. B 60 791
|
[23] |
Zeng X B, Zhu X L, Li D H, Chen Z J and Ai Y W 2014 Acta Phys. Sin. 63 153101 (in Chinese)
|
[24] |
Miao N Q, Pu C Y, He C Z, Zhang F W, Lu C, Lu Z W and Zhou D W 2014 Chin. Phys. B 23 127101
|
[25] |
Pu C Y, Zhou D W, Bao D X, Lu C, Jin X L, Su T C and Zhang F W 2014 Chin. Phys. B 23 026201
|
[26] |
Tang F L, Liu R, Xue H T, Lu W J, Feng Y D, Rui Z Y and Huang M 2014 Chin. Phys. B 23 077301
|
[27] |
Ali R, Murtaza G, Takagiwa Y, Khenata R, Uddin H, Ullah H and Khan S A 2014 Chin. Phys. Lett. 31 047102
|
[28] |
Page Y L and Saxe P 2002 Phys. Rev. B 65 104104
|
[29] |
Shang S L, Sheng G, Wang Y, Chen L Q and Liu Z K 2009 Phys. Rev. B 80 052102
|
[30] |
Kim D E, Shang S L and Liu Z K 2009 Comput. Mater. Sci. 47 254
|
[31] |
Shang S L, Wang Y and Liu Z K 2007 Appl. Phys. Lett. 90 101909
|
[32] |
Zhang J X, Li Y L, Wang Y, Liu Z K, Chen L Q, Chu Y H, Zavaliche F and Ramesh R 2007 J. Appl. Phys. 101 114105
|
[33] |
Baroni S, Giannozzi P and Testa A 1987 Phys. Rev. Lett. 59 2662
|
[34] |
Hamann D R, Wu X F, Rabe K M and Vanderbilt D 2005 Phys. Rev. B 71 035117
|
[35] |
Wu X, Vanderbilt D and Hamann D R 2005 Phys. Rev. B 72 035105
|
[36] |
Wallace D C 1972 Thermodynamics of Crystals (New York: Wiley) p. 22
|
[37] |
Qiu S L and Marcus P M 2003 Phys. Rev. B 68 054103
|
[38] |
Burakovsky L, Chen S P, Preston D L, Belonoshko A B, Rosengren A, Mikhaylushkin A S, Simak S I and Moriarty J A 2010 Phys. Rev. Lett. 104 255702
|
[39] |
Soderlind P and Moriarty J A 1998 Phys. Rev. B 57 10340
|
[40] |
Moriarty J A 1994 Phys. Rev. B 94 12431
|
[41] |
Moriarty J, Belak J, Rudd R, Soderlind P, Streitz F and Yang L 2002 J. Phys.: Condens. Matter 14 2825
|
[42] |
Holmes N C, Moriarty J A, Gathers G and Nellis W J 1989 J. Appl. Phys. 66 2962
|
[43] |
Nellis W J, Mitchell A C and Young D A 2003 J. Appl. Phys. 93 304
|
[44] |
Mitchell A and Nellis W 1981 J. Appl. Phys. 52 3363
|
[45] |
Liu L G, Takahashi T and Bassett W A 1970 J. Phys. Chem. Solids 31 1345
|
[46] |
Vohra Y K, Duclos S J and Ruoff A L 1987 Phys. Rev. B 36 9790
|
[47] |
Jeanloz R, Godwal B K and Meade C 1991 Nature 349 687
|
[48] |
Dubrovinsky L, Dubrovinskaia N, Prakapenka V B and Abakumov A M 2012 Nat. Commun. 3 1163
|
[49] |
Verma A K, Ravindran P, Rao R S, Godwal B K and Jeanloz R 2003 Bull. Mater. Sci. 26 183
|
[50] |
Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
|
[51] |
Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
|
[52] |
Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
|
[53] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[54] |
Birch E 1978 J. Geophys. Res. 83 1257
|
[55] |
Dewaele A, Loubeyre P and Mezouar M 2004 Phys. Rev. B 70 094112
|
[56] |
Holzapfel W B 2003 J. Appl. Phys. 93 1813
|
[57] |
Cynn H and Yoo C S 1999 Phys. Rev. B 59 8526
|
[58] |
Anzellini S, Dewaele A, Occelli F, Loubeyre P and Mezouar M 2014 J. Appl. Phys. 115 043511
|
[59] |
Vohra Y K, Duclos S J and Ruoff A L 1987 Phys. Rev. B 36 9790
|
[60] |
Liu L G, Takahashi T and Bassett W A 1970 J. Phys. Chem. Solids 31 1345
|
[61] |
Montalvo R A and Langer D W 1970 J. Appl. Phys. 41 4101
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|