Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 080503    DOI: 10.1088/1674-1056/24/8/080503
GENERAL Prev   Next  

Secure communication based on spatiotemporal chaos

Ren Hai-Peng (任海鹏), Bai Chao (白超)
Department of Information and Control Engineering, Xi'an University of Technology, Xi'an 710048, China
Abstract  

In this paper, we propose a novel approach to secure communication based on spatiotemporal chaos. At the transmitter end, the state variables of the coupled map lattice system are divided into two groups: one is used as the key to encrypt the plaintext in the N-shift encryption function, and the other is used to mix with the output of the N-shift function to further confuse the information to transmit. At the receiver end, the receiver lattices are driven by the received signal to synchronize with the transmitter lattices and an inverse procedure of the encoding is conducted to decode the information. Numerical simulation and experiment based on the TI TMS320C6713 Digital Signal Processor (DSP) show the feasibility and the validity of the proposed scheme.

Keywords:  secure communication      spatiotemporal chaos      synchronization      N-shift function  
Received:  27 November 2014      Revised:  23 February 2015      Accepted manuscript online: 
PACS:  05.45.Vx (Communication using chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Jn (High-dimensional chaos)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61172070) and the Funds from the Science and Technology Innovation Team of Shaanxi Province, China (Grant No. 2013CKT-04).

Corresponding Authors:  Ren Hai-Peng     E-mail:  haipengren@gmail.com

Cite this article: 

Ren Hai-Peng (任海鹏), Bai Chao (白超) Secure communication based on spatiotemporal chaos 2015 Chin. Phys. B 24 080503

[1] Ren H P, Baptist M and Grebogi C 2014 Robustness of chaos to media with multipath propagation (Boca Raton: CRC Press) pp. 423–437
[2] Carroll T L, Pecora and Louis M 1991 IEEE Trans. Circuits Syst. II 38 453
[3] Ren H P and Li W C 2010 Commun. Nonlinear Sci. Numer. Simul. 15 3058
[4] Wang X Y, Zhang N, Ren X L and Zhang Y L 2011 Chin. Phys. B 20 020507
[5] Wang X Y and Wang Q 2014 Chin. Phys. B 23 030503
[6] Ren H P, Baptist M and Grebogi C 2012 Int. J. Bifur. Chaos 22 1250199
[7] Hayes S, Grebogi C, Ott E and Mark A 1994 Phys. Rev. Lett. 73 1781
[8] Oppenheim A V, Wornell G W, Isabelle S H and Cuomo K M 1992 Proc. IEEE ICASSP, March 23–26, 1992, San Franciso, USA, p. 117
[9] Ponomarenko V I and Prokhorov M D 2002 Phys. Rev. E 66 026215.
[10] Yang T, Yang L B and Yang C M 1998 Phys. Lett. A 245 495
[11] Halle K S, Wu C W, Itoh M and Chua L O 1993 Int. J. Bifur. Chaos 3 469
[12] Andrew T P and Kevin M S 2001 IEEE Trans. CAS I 48 624
[13] Kevin M S 1994 Int. J. Bifur. Chaos 4 959
[14] Dedieu H, Kennedy M P and Hasler M 1993 IEEE Trans. CAS II 40 634
[15] Chin Y C, Dao L X and Steven R B 2004 Chaos, Solitons and Fractals 21 1129
[16] Yang T, Yang L B and Yang C M 1998 Phys. Lett. A 247 105
[17] Yang T, Yang L B and Yang C M 1998 IEEE Trans. CAS I 45 1062
[18] Ren H P, Han C Z and Liu D 2008 Chin. Phys. B 17 1202
[19] Gianluc M, Riccardo R and Gianluc S 2001 IEEE Trans. CAS I 48 1445
[20] Ren H P, Kong Q J and Bai C 2015 Proc. IEEE IWS, March 30–April 1, 2015, Shenzhen, China, p. 82
[21] Argyris A, Syvridis D, Larger L, Annovazzi L V, Colet P, Fischer I, Garcia O J, Mirasso C R, Pesquera L and Shore K A 2005 Nature 438 343
[22] Ren H P, Baptist M and Grebogi C 2013 Phys. Rev. Lett. 110 184101
[23] Zhou J, Jiang H, Hisakazu K and Shao G F 2014 Acta Phys. Sin. 63 140506 (in Chinese)
[24] Huang J W, Li G M, Feng J C and Jin J X 2014 Acta Phys. Sin. 14 140502 (in Chinese)
[25] Wang X Y and Luan D P 2013 Chin. Phys. B 22 110503
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Novel traveling quantum anonymous voting scheme via GHZ states
Wenhao Zhao(赵文浩) and Min Jiang(姜敏). Chin. Phys. B, 2023, 32(2): 020303.
[4] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[5] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[6] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[7] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[8] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[9] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[10] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[11] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[12] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
[13] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[14] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[15] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
No Suggested Reading articles found!