Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 078501    DOI: 10.1088/1674-1056/24/7/078501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Low-Tc direct current superconducting quantum interference device magnetometer-based 36-channel magnetocardiography system in a magnetically shielded room

Qiu Yang (邱阳)a b c, Li Hua (李华)a b c, Zhang Shu-Lin (张树林)a b, Wang Yong-Liang (王永良)a b, Kong Xiang-Yan (孔祥燕)a b, Zhang Chao-Xiang (张朝祥)a b, Zhang Yong-Sheng (张永升)a b, Xu Xiao-Feng (徐小峰)a b, Yang Kang (杨康)a b c, Xie Xiao-Ming (谢晓明)a b
a State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
b Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration between Chinese Academy of Sciences-Shanghai, Shanghai 200050, China and FZJ, D-52425 Julich, Germany;
c University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We constructed a 36-channel magnetocardiography (MCG) system based on low-Tc direct current (DC) superconducting quantum interference device (SQUID) magnetometers operated inside a magnetically shielded room (MSR). Weakly damped SQUID magnetometers with large Steward–McCumber parameter βc (βc ≈ 5), which could directly connect to the operational amplifier without any additional feedback circuit, were used to simplify the readout electronics. With a flux-to-voltage transfer coefficient ∂V/∂Ø larger than 420 μV/Ø0, the SQUID magnetometers had a white noise level of about 5.5 fT·Hz-1/2 when operated in MSR. 36 sensing magnetometers and 15 reference magnetometers were employed to realize software gradiometer configurations. The coverage area of the 36 sensing magnetometers is 210× 210 mm2. MCG measurements with a high signal-to-noise ratio of 40 dB were done successfully using the developed system.
Keywords:  superconducting quantum interference devices      magnetometer      magnetocardiography      noise cancellation  
Received:  12 January 2015      Revised:  09 February 2015      Accepted manuscript online: 
PACS:  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
  07.55.Ge (Magnetometers for magnetic field measurements)  
  87.85.Pq (Biomedical imaging)  
  43.50.+y (Noise: its effects and control)  
Fund: Project supported by "One Hundred Persons Project" of the Chinese Academy of Sciences and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB04020200).
Corresponding Authors:  Kong Xiang-Yan     E-mail:  xykong@mail.sim.ac.cn

Cite this article: 

Qiu Yang (邱阳), Li Hua (李华), Zhang Shu-Lin (张树林), Wang Yong-Liang (王永良), Kong Xiang-Yan (孔祥燕), Zhang Chao-Xiang (张朝祥), Zhang Yong-Sheng (张永升), Xu Xiao-Feng (徐小峰), Yang Kang (杨康), Xie Xiao-Ming (谢晓明) Low-Tc direct current superconducting quantum interference device magnetometer-based 36-channel magnetocardiography system in a magnetically shielded room 2015 Chin. Phys. B 24 078501

[1] Morguet A J, Behrens S, Kosch O, Lange C, Zabela M, Selbig D, Munz D L, Schultheiss H P and Koch H 2004 Coronary Artery Dis. 15 155
[2] Dietmar D 1995 IEEE Trans. Appl. Supercond. 5 2112
[3] Lee Y H, Yu K K, Kim J M, Kwon H and Kim K 2009 Supercond. Sci. Technol. 22 114003
[4] Zhang S L, Zhang G F, Wang Y L, Liu M, Li H, Qiu Y, Zeng J, Kong X Y and Xie X M 2013 Chin. Phys. B 22 128501
[5] Clarke J and Braginski A I 2004 The SQUID Handbook (Vol. II) (Weinheim: Wiley) p. 278
[6] Forgacs R L and Warnick A 1967 Rev. Sci. Instrum. 38 214
[7] Drung D, Cantor R, Peters M, Scheer H J and Koch H 1990 Appl. Phys. Lett. 57 406
[8] Kiviranta M and Seppa H 1995 IEEE Trans. Appl. Supercond. 5 2146
[9] Xie X M, Zhang Y, Wang H W, Wang Y L, Mück M, Dong H, Krause H J, Braginski A I, Offenhäusser A and Jiang M H 2010 Supercond. Sci. Technol. 23 065016
[10] Liu C, Zhang Y, Mück M, Krause H J, Braginski A I, Xie X M, Offenhäusser A and Jiang M H 2012 Appl. Phys. Lett. 101 222602
[11] Kong X Y, Zhang S L, Wang Y L, Zeng J and Xie X M 2012 Phys. Procedia 36 286
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography
Qing-Qian Guo(郭清乾), Tao Hu(胡涛), Xiao-Yu Feng(冯晓宇), Ming-Kang Zhang(张明康), Chun-Qiao Chen(陈春巧), Xin Zhang(张欣), Ze-Kun Yao(姚泽坤), Jia-Yu Xu(徐佳玉),Qing Wang(王青), Fang-Yue Fu(付方跃), Yin Zhang(张寅), Yan Chang(常严), and Xiao-Dong Yang(杨晓冬). Chin. Phys. B, 2023, 32(4): 040702.
[3] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[4] Residual field suppression for magnetocardiography measurement inside a thin magnetically shielded room using bi-planar coil
Kang Yang(杨康), Hong-Wei Zhang(张宏伟), Qian-Nian Zhang(张千年),Jun-Jun Zha(查君君), and Deng-Chao Huang(黄登朝). Chin. Phys. B, 2022, 31(7): 070701.
[5] Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
Kai-Feng Yin(尹凯峰), Ji-Xi Lu(陆吉玺), Fei Lu(逯斐), Bo Li(李博), Bin-Quan Zhou(周斌权), and Mao Ye(叶茂). Chin. Phys. B, 2022, 31(11): 110703.
[6] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[7] Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes
Si-Yuan Hao(郝思源), Xiao-Ping Lou(娄小平), Jing Zhu(祝静), Guang-Wei Chen(陈广伟), and Hui-Yu Li(李慧宇). Chin. Phys. B, 2021, 30(6): 060702.
[8] Search for topological defect of axionlike model with cesium atomic comagnetometer
Yucheng Yang(杨雨成), Teng Wu(吴腾), Jianwei Zhang(张建玮), and Hong Guo(郭弘). Chin. Phys. B, 2021, 30(5): 050704.
[9] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[10] Atomic magnetometer with microfabricated vapor cells based on coherent population trapping
Xiaojie Li(李晓杰), Yue Shi(史越), Hongbo Xue(薛洪波), Yong Ruan(阮勇), and Yanying Feng(冯焱颖). Chin. Phys. B, 2021, 30(3): 030701.
[11] Precision measurements with cold atoms and trapped ions
Qiuxin Zhang(张球新), Yirong Wang(王艺蓉), Chenhao Zhu(朱晨昊), Yuxin Wang(王玉欣), Xiang Zhang(张翔), Kuiyi Gao(高奎意), Wei Zhang(张威). Chin. Phys. B, 2020, 29(9): 093203.
[12] Polarization and fundamental sensitivity of 39K (133Cs)-85Rb-21Neco-magnetometers
Jian-Hua Liu(刘建华), Dong-Yang Jing(靖东洋), Lin Zhuang(庄琳), Wei Quan(全伟), Jiancheng Fang(房建成), Wu-Ming Liu(刘伍明). Chin. Phys. B, 2020, 29(4): 043206.
[13] A synthetic optically pumped gradiometer for magnetocardiography measurements
Shu-Lin Zhang(张树林), Ning Cao(曹宁). Chin. Phys. B, 2020, 29(4): 040702.
[14] Spin-exchange relaxation of naturally abundant Rb in a K-Rb-21Ne self-compensated atomic comagnetometer
Yan Lu(卢妍), Yueyang Zhai(翟跃阳), Yong Zhang(张勇), Wenfeng Fan(范文峰), Li Xing(邢力), Wei Quan(全伟). Chin. Phys. B, 2020, 29(4): 043204.
[15] Reconstruction of vector static magnetic field by different axial NV centers using continuous wave optically detected magnetic resonance in diamond
Jian-Feng Ye(叶剑锋), Zheng Jiao(焦铮), Kun Ma(马堃), Zhi-Yong Huang(黄志永), Hai-Jiang Lv(吕海江), Feng-Jian Jiang(蒋峰建). Chin. Phys. B, 2019, 28(4): 047601.
No Suggested Reading articles found!