CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Enhanced ultraviolet photoresponse based on ZnO nanocrystals/Pt bilayer nanostructure |
Tong Xiao-Lin (佟晓林)a b, Xia Xiao-Zhi (夏晓智)b, Li Qing-Xia (李青侠)a |
a Department of Electronics and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; b School of Physics and Electronics, Henan University, Kaifeng 475001, China |
|
|
Abstract The development of solution strategies for Zinc oxide (ZnO) quantum dots provides a pathway to utilizing ZnO nanocrystal thin films in optoelectronic devices. In this work, quasi-spherical ZnO quantum dots with a diameter of 5 nm are synthesized by using ethanol as a solvent. ZnO nanocrystal thin film is obtained by spin-coating ZnO quantum dots on a Au interdigital electrode (IDE)/Al2O3 substrate and annealing at different temperatures in order to yield the optimal photosensitive on/off ratio of ZnO. For further enhancing the responsivity, ion sputtering is utilized to deposit Pt nanoparticles on the surface of ZnO nanocrystal thin film, the responsivity of the ZnO/Pt bilayer nanostructure increases from 0.07 A/W to 54 A/W, showing that the metal/inorganic nanocrystal bilayer nanostructure can be used to improve the performance of optoelectronic devices. The excellent properties of ZnO/Pt bilayer nanostructure have important applications in future electronic and optoelectronic devices.
|
Received: 26 August 2014
Revised: 26 January 2015
Accepted manuscript online:
|
PACS:
|
73.63.Bd
|
(Nanocrystalline materials)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 41176156). |
Corresponding Authors:
Li Qing-Xia
E-mail: qingxia_li@hust.edu.cn
|
About author: 73.63.Bd; 85.30.De; 68.55.-a |
Cite this article:
Tong Xiao-Lin (佟晓林), Xia Xiao-Zhi (夏晓智), Li Qing-Xia (李青侠) Enhanced ultraviolet photoresponse based on ZnO nanocrystals/Pt bilayer nanostructure 2015 Chin. Phys. B 24 067306
|
[1] |
Kim H, Gilmore C, Horwitz J, Pique A, Murata H, Kushto G, Schlaf R, Kafafi Z and Chrisey D 2000 Appl. Phys. Lett. 76 259
|
[2] |
Ortel M, Pittner S and Wagner V 2013 J. Appl. Phys. 113 154502
|
[3] |
Liu Y R, Su J, Lai P T and Yao R H 2014 Chin. Phys. B 23 068501
|
[4] |
Luther J M, Gao J, Lloyd M T, Semonin O E, Beard M C and Nozik A J 2010 Adv. Mater. 22 3704
|
[5] |
Bakin A, El Shaer A, Mofor A C, Al Suleiman M, Schlenker E and Waag A 2007 Phys. Status Solidi C 4 158
|
[6] |
Jia Z N, Zhang X D, Liu Y, Wang Y F, Fan J, Liu C C and Zhao Y 2014 Chin. Phys. B 23 046106
|
[7] |
Hongsith N, Wongrat E, Kerdcharoen T and Choopun S 2010 Sensor. Actuat. B-Chem. 144 67
|
[8] |
Oh E, Choi H Y, Jung S H, Cho S, Kim J C, Lee K H, Kang S W, Kim J, Yun J Y and Jeong S H 2009 Sensor. Actuat. B-Chem. 141 239
|
[9] |
Ren S T, Wang Q, Zhao F and Qu S L 2012 Chin. Phys. B 21 038104
|
[10] |
Zhou J, Gu Y, Hu Y, Mai W, Yeh P H, Bao G, Sood A K, Polla D L and Wang Z L 2009 Appl. Phys. Lett. 94 191103
|
[11] |
Bie Y Q, Liao Z M, Zhang H Z, Li G R, Ye Y, Zhou Y B, Xu J, Qin Z X, Dai L and Yu D P 2011 Adv. Mater. 23 649
|
[12] |
Guo F, Yang B, Yuan Y, Xiao Z, Dong Q, Bi Y and Huang J 2012 Nat. Nanotechnol. 7 798
|
[13] |
Zhang D and Brodie D 1994 Thin Solid Films 251 151
|
[14] |
Sharma P, Sreenivas K and Rao K 2003 J. Appl. Phys. 93 3963
|
[15] |
Studenikin S, Golego N and Cocivera M 2000 J. Appl. Phys. 87 2413
|
[16] |
Zhang D 1995 J. Phys. D: Appl. Phys. 28 1273
|
[17] |
Gu Z and Ban S L 2014 Acta Phys. Sin. 63 107301 (in Chinese)
|
[18] |
Mao Y Z, Liu Y X, Li J, Li H, Pan X J and Xie E Q 2014 Acta Phys. Sin. 63 186801 (in Chinese)
|
[19] |
Hou Q Y, Lu Z Y and Zhao C W 2014 Acta Phys. Sin. 63 197102 (in Chinese)
|
[20] |
Tang X Y, Gao H, Pan S M, Sun J B, Yao X W and Zhang X T 2014 Acta Phys. Sin. 63 197302 (in Chinese)
|
[21] |
Moazzami K, Murphy T, Phillips J, Cheung M C and Cartwright A 2006 Semicond. Sci. Technol. 21 717
|
[22] |
Porter H, Cai A, Muth J and Narayan J 2005 Appl. Phys. Lett. 86 211918
|
[23] |
Zhao X W, Gao X Y, Chen X M, Chen C and Zhao M K 2013 Chin. Phys. B 22 024202
|
[24] |
Liu M and Kim H K 2004 Appl. Phys. Lett. 84 173
|
[25] |
Wang Y B, Li G P, Xu N N and Pan X D 2013 Chin. Phys. B 22 036102
|
[26] |
Zhao J, Dong J Y, Zhao X and Chen W 2014 Chin. Phys. Lett. 31 057307
|
[27] |
Xu X Y, Ma X Y, Jin L and Yang D R 2012 Chin. Phys. Lett. 29 037301
|
[28] |
Zhang Z, Yuan H, Zhou J, Liu D, Luo S, Miao Y, Gao Y, Wang J, Liu L and Song L 2006 J. Phys. Chem. B 110 8566
|
[29] |
Fan H B, Zheng X L, Wu S C, Liu Z G and Yao H B 2012 Chin. Phys. B 21 038101
|
[30] |
Yang P, Li P, Zhang L Q, Wang X L, Wang H, Song X F and Xie F W 2012 Chin. Phys. B 21 016803
|
[31] |
Mollow E 1954 Photoconductivity Conference (John Wiley & Sons)
|
[32] |
Yadav H K, Sreenivas K and Gupta V 2007 Appl. Phys. Lett. 90 172113
|
[33] |
Yadav H K, Sreenivas K and Gupta V 2010 J. Appl. Phys. 107 044507
|
[34] |
Wei T Y, Yeh P H, Lu S Y and Wang Z L 2009 J. Am. Chem. Soc. 131 17690
|
[35] |
Kane W M 1966 J. Appl. Phys. 37 2085
|
[36] |
Sherry L J, Jin R, Mirkin C A, Schatz G C and Duyne R P V 2006 Nano Lett. 6 2060
|
[37] |
Liu K W, Liu B, Wang S J, Wei Z P, Wu T, Cong C X, Shen Z X, Sun X W and Sun H D 2009 J. Appl. Phys. 106 083110
|
[38] |
Spanhel L and Anderson M A 1991 J. Am. Chem. Soc. 113 2826
|
[39] |
Zhou H, Alves H, Hofmann D, Kriegseis W, Meyer B, Kaczmarczyk G and Hoffmann A 2002 Appl. Phys. Lett. 80 210
|
[40] |
Kim K K, Kim H S, Hwang D K, Lim J H and Park S J 2003 Appl. Phys. Lett. 83 63
|
[41] |
Xu X, Xu C and Hu J 2014 J. Appl. Phys. 116 103105
|
[42] |
Liu T, Zhang X, Zhang J, Wang W, Feng L, Wu L, Li W, Zeng G and Li B 2013 Int. J. Photoenergy 2013 1
|
[43] |
Sze S M and Ng K K 2006 Physics of Semiconductor Devices (Hoboken: John Wiley & Sons)
|
[44] |
Prabhakar R R, Mathews N, Jinesh K B, Karthik K R G, Pramana S S, Varghese B, Sow C H and MhaiSalkar S 2012 J. Mater. Chem. 19 9678
|
[45] |
Chen M, Hu L, Xu J, Liao M, Wu L and Fang X 2011 Small 7 2449
|
[46] |
Liu H, Zhang Z, Hu L, Gao N, Sang L, Liao M, Ma R, Xu F and Fang X 2014 Adv. Opt. Mater. 2 771
|
[47] |
Li D Z and Zhu R 2013 Chin. Phys. B 22 018502
|
[48] |
Ren L, Tian T, Li Y, Huang J and Zhao X 2013 ACS Appl. Mater. Int. 5 5861
|
[49] |
Zhu Y B, Hu W, Na J, He F, Zhou Y L and Chen C 2011 Chin. Phys. B 20 047301
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|