|
|
Quantum nonlocality of generic family of four-qubit entangled pure states |
Ding Dong (丁东)a b, He Ying-Qiu (何英秋)a, Yan Feng-Li (闫凤利)a, Gao Ting (高亭)c |
a College of Physics Science and Information Engineering, Hebei Normal University, Shijiazhuang 050024, China;
b Department of Basic Curriculum, North China Institute of Science and Technology, Beijing 101601, China;
c College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024, China |
|
|
Abstract We directly introduce a Bell-type inequality for four-qubit systems. Using the inequality we investigate quantum nonlocality of a generic family of states |Gabcd> [Phys. Rev. A 65 052112 (2002)] and several canonical four-qubit entangled states. It has been demonstrated that the inequality is maximally violated by the so called “four-qubit the maximally entangled state |Gm>” and it is also violated by four-qubit W state and a special family of states |Gab00>. Moreover, a useful entanglement-nonlocality relationship for the family of states |Gab00> is derived. Finally, we present a scheme of preparation of the state |Gm ightangle with linear optics and cross-Kerr nonlinearities.
|
Received: 03 December 2014
Revised: 09 March 2015
Accepted manuscript online:
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.-a
|
(Quantum information)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11475054 and 11371005), Hebei Natural Science Foundation of China (Grant Nos. A2012205013 and A2014205060), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. 3142014068 and 3142014125), and Langfang Key Technology Research and Development Program of China (Grant No. 2014011002). |
Corresponding Authors:
Yan Feng-Li, Gao Ting
E-mail: flyan@hebtu.edu.cn;gaoting@hebtu.edu.cn
|
Cite this article:
Ding Dong (丁东), He Ying-Qiu (何英秋), Yan Feng-Li (闫凤利), Gao Ting (高亭) Quantum nonlocality of generic family of four-qubit entangled pure states 2015 Chin. Phys. B 24 070301
|
[1] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
|
[2] |
Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
|
[3] |
Yan F L, Gao T and Chitambar E 2011 Phys. Rev. A 83 022319
|
[4] |
Gao T, Yan F L and van Enk S J 2014 Phys. Rev. Lett. 112 180501
|
[5] |
Bai Y K, Xu Y F and Wang Z D 2014 Phys. Rev. Lett. 113 100503
|
[6] |
Ma Z H, Chen Z H, Chen J L, Spengler C, Gabriel A and Huber M 2011 Phys. Rev. A 83 062325
|
[7] |
Hong Y, Gao T and Yan F L 2012 Phys. Rev. A 86 062323
|
[8] |
Gao T and Hong Y 2011 Eur. Phys. J. D 61 765
|
[9] |
Gao T and Hong Y 2010 Phys. Rev. A 82 062113
|
[10] |
Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
|
[11] |
Acín A, Andrianov A, Costa L, Jané E, Latorre J I and Tarrach R 2000 Phys. Rev. Lett. 85 1560
|
[12] |
Verstraete F, Dehaene J, De Moor B and Verschelde H 2002 Phys. Rev. A 65 052112
|
[13] |
Liu B, Li J L, Li X K and Qiao C F 2012 Phys. Rev. Lett. 108 050501
|
[14] |
Wootters W K 1998 Phys. Rev. Lett. 80 2245
|
[15] |
Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
|
[16] |
Sharma S S and Sharma N K 2010 Phys. Rev. A 82 012340
|
[17] |
Sharma S S and Sharma N K 2013 Phys. Rev. A 87 022335
|
[18] |
Sharma S S and Sharma N K arXiv:quant-ph/1309.2713
|
[19] |
Wong A and Christensen N 2001 Phys. Rev. A 63 044301
|
[20] |
Li D F, Li X R, Huang H T and Li X X 2009 J. Math. Phys. 50 012104
|
[21] |
Bell J S 1987 Speakable and Unspeakable in Quantum Mechanics (Cambridge: Cambridge University Press)
|
[22] |
Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 23 880
|
[23] |
Gisin N 1991 Phys. Lett. A 154 201
|
[24] |
Gisin N and Peres A 1992 Phys. Lett. A 162 15
|
[25] |
Acín A, Chen J L, Gisin N, Kaszlikowski D, Kwek L C, Oh C H and Żukowski M 2004 Phys. Rev. Lett. 92 250404
|
[26] |
Mermin N D 1990 Phys. Rev. Lett. 65 1838
|
[27] |
Ardehali M 1992 Phys. Rev. A 46 5375
|
[28] |
Belinskiï A V and Klyshko D N 1993 Phys. Usp. 36 653
|
[29] |
Werner R F and Wolf M M 2001 Phys. Rev. A 64 032112
|
[30] |
Żukowski M and Brukner Č 2002 Phys. Rev. Lett. 88 210401
|
[31] |
Svetlichny G 1987 Phys. Rev. D 35 3066
|
[32] |
Li M and Fei S M 2012 Phys. Rev. A 86 052119
|
[33] |
Grandjean B, Liang Y C, Bancal J D, Brunner N and Gisin N 2012 Phys. Rev. A 85 052113
|
[34] |
Scarani V, Acín A, Schenck E and Aspelmeyer M 2005 Phys. Rev. A 71 042325
|
[35] |
Wu C F, Yeo Y, Kwek L C and Oh C H 2007 Phys. Rev. A 75 032332
|
[36] |
Pitowsky I and Svozil K 2001 Phys. Rev. A 64 014102
|
[37] |
Wu Y C, Żukowski M, Chen J L and Guo G C 2013 Phys. Rev. A 88 022126
|
[38] |
Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
|
[39] |
Ding D, Yan F L and Gao T 2013 J. Opt. Soc. Am. B 30 003075
|
[40] |
Yeo Y and Chua W K 2006 Phys. Rev. Lett. 96 060502
|
[41] |
Higuchi A and Sudbery A 2000 Phys. Lett. A 273 213
|
[42] |
Brown I D K, Stepney S, Sudbery A and Braunstein S L 2005 J. Phys. A 38 1119
|
[43] |
Ghose S, Sinclair N, Debnath S, Rungta P and Stock R 2009 Phys. Rev. Lett. 102 250404
|
[44] |
Ajoy A and Rungta P 2010 Phys. Rev. A 81 052334
|
[45] |
Ghose S, Debnath S, Sinclair N, Kabra A and Stock R 2010 J. Phys. A 43 445301
|
[46] |
Zhao J Q, Cao L Z, Lu H X and Wang X Q 2013 Acta Phys. Sin. 62 120301 (in Chinese)
|
[47] |
Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
|
[48] |
Gao T, Yan F L and Wang Z X 2004 J. Phys. A 37 3211
|
[49] |
Gao T 2004 Commun. Theor. Phys. 42 223
|
[50] |
Li X H, Duan X J, Sheng Y B, Zhou H Y and Deng F G 2009 Chin. Phys. B 18 3710
|
[51] |
Ding D and Yan F L 2013 Phys. Lett. A 377 1088
|
[52] |
Liu Y, Chen T Y, Wang L J, Liang H, Shentu G L, Wang J, Cui K, Yin H L, Liu N L, Li L, Ma X F, Pelc J S, Fejer M M, Peng C Z, Zhang Q and Pan J W 2013 Phys. Rev. Lett. 111 130502
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|