Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 070301    DOI: 10.1088/1674-1056/24/7/070301
GENERAL Prev   Next  

Quantum nonlocality of generic family of four-qubit entangled pure states

Ding Dong (丁东)a b, He Ying-Qiu (何英秋)a, Yan Feng-Li (闫凤利)a, Gao Ting (高亭)c
a College of Physics Science and Information Engineering, Hebei Normal University, Shijiazhuang 050024, China;
b Department of Basic Curriculum, North China Institute of Science and Technology, Beijing 101601, China;
c College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024, China
Abstract  

We directly introduce a Bell-type inequality for four-qubit systems. Using the inequality we investigate quantum nonlocality of a generic family of states |Gabcd> [Phys. Rev. A 65 052112 (2002)] and several canonical four-qubit entangled states. It has been demonstrated that the inequality is maximally violated by the so called “four-qubit the maximally entangled state |Gm>” and it is also violated by four-qubit W state and a special family of states |Gab00>. Moreover, a useful entanglement-nonlocality relationship for the family of states |Gab00> is derived. Finally, we present a scheme of preparation of the state |Gm ightangle with linear optics and cross-Kerr nonlinearities.

Keywords:  quantum nonlocality      Bell-type inequality      quantum entanglement  
Received:  03 December 2014      Revised:  09 March 2015      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11475054 and 11371005), Hebei Natural Science Foundation of China (Grant Nos. A2012205013 and A2014205060), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. 3142014068 and 3142014125), and Langfang Key Technology Research and Development Program of China (Grant No. 2014011002).

Corresponding Authors:  Yan Feng-Li, Gao Ting     E-mail:  flyan@hebtu.edu.cn;gaoting@hebtu.edu.cn

Cite this article: 

Ding Dong (丁东), He Ying-Qiu (何英秋), Yan Feng-Li (闫凤利), Gao Ting (高亭) Quantum nonlocality of generic family of four-qubit entangled pure states 2015 Chin. Phys. B 24 070301

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[3] Yan F L, Gao T and Chitambar E 2011 Phys. Rev. A 83 022319
[4] Gao T, Yan F L and van Enk S J 2014 Phys. Rev. Lett. 112 180501
[5] Bai Y K, Xu Y F and Wang Z D 2014 Phys. Rev. Lett. 113 100503
[6] Ma Z H, Chen Z H, Chen J L, Spengler C, Gabriel A and Huber M 2011 Phys. Rev. A 83 062325
[7] Hong Y, Gao T and Yan F L 2012 Phys. Rev. A 86 062323
[8] Gao T and Hong Y 2011 Eur. Phys. J. D 61 765
[9] Gao T and Hong Y 2010 Phys. Rev. A 82 062113
[10] Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
[11] Acín A, Andrianov A, Costa L, Jané E, Latorre J I and Tarrach R 2000 Phys. Rev. Lett. 85 1560
[12] Verstraete F, Dehaene J, De Moor B and Verschelde H 2002 Phys. Rev. A 65 052112
[13] Liu B, Li J L, Li X K and Qiao C F 2012 Phys. Rev. Lett. 108 050501
[14] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[15] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
[16] Sharma S S and Sharma N K 2010 Phys. Rev. A 82 012340
[17] Sharma S S and Sharma N K 2013 Phys. Rev. A 87 022335
[18] Sharma S S and Sharma N K arXiv:quant-ph/1309.2713
[19] Wong A and Christensen N 2001 Phys. Rev. A 63 044301
[20] Li D F, Li X R, Huang H T and Li X X 2009 J. Math. Phys. 50 012104
[21] Bell J S 1987 Speakable and Unspeakable in Quantum Mechanics (Cambridge: Cambridge University Press)
[22] Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 23 880
[23] Gisin N 1991 Phys. Lett. A 154 201
[24] Gisin N and Peres A 1992 Phys. Lett. A 162 15
[25] Acín A, Chen J L, Gisin N, Kaszlikowski D, Kwek L C, Oh C H and Żukowski M 2004 Phys. Rev. Lett. 92 250404
[26] Mermin N D 1990 Phys. Rev. Lett. 65 1838
[27] Ardehali M 1992 Phys. Rev. A 46 5375
[28] Belinskiï A V and Klyshko D N 1993 Phys. Usp. 36 653
[29] Werner R F and Wolf M M 2001 Phys. Rev. A 64 032112
[30] Żukowski M and Brukner Č 2002 Phys. Rev. Lett. 88 210401
[31] Svetlichny G 1987 Phys. Rev. D 35 3066
[32] Li M and Fei S M 2012 Phys. Rev. A 86 052119
[33] Grandjean B, Liang Y C, Bancal J D, Brunner N and Gisin N 2012 Phys. Rev. A 85 052113
[34] Scarani V, Acín A, Schenck E and Aspelmeyer M 2005 Phys. Rev. A 71 042325
[35] Wu C F, Yeo Y, Kwek L C and Oh C H 2007 Phys. Rev. A 75 032332
[36] Pitowsky I and Svozil K 2001 Phys. Rev. A 64 014102
[37] Wu Y C, Żukowski M, Chen J L and Guo G C 2013 Phys. Rev. A 88 022126
[38] Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
[39] Ding D, Yan F L and Gao T 2013 J. Opt. Soc. Am. B 30 003075
[40] Yeo Y and Chua W K 2006 Phys. Rev. Lett. 96 060502
[41] Higuchi A and Sudbery A 2000 Phys. Lett. A 273 213
[42] Brown I D K, Stepney S, Sudbery A and Braunstein S L 2005 J. Phys. A 38 1119
[43] Ghose S, Sinclair N, Debnath S, Rungta P and Stock R 2009 Phys. Rev. Lett. 102 250404
[44] Ajoy A and Rungta P 2010 Phys. Rev. A 81 052334
[45] Ghose S, Debnath S, Sinclair N, Kabra A and Stock R 2010 J. Phys. A 43 445301
[46] Zhao J Q, Cao L Z, Lu H X and Wang X Q 2013 Acta Phys. Sin. 62 120301 (in Chinese)
[47] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[48] Gao T, Yan F L and Wang Z X 2004 J. Phys. A 37 3211
[49] Gao T 2004 Commun. Theor. Phys. 42 223
[50] Li X H, Duan X J, Sheng Y B, Zhou H Y and Deng F G 2009 Chin. Phys. B 18 3710
[51] Ding D and Yan F L 2013 Phys. Lett. A 377 1088
[52] Liu Y, Chen T Y, Wang L J, Liang H, Shentu G L, Wang J, Cui K, Yin H L, Liu N L, Li L, Ma X F, Pelc J S, Fejer M M, Peng C Z, Zhang Q and Pan J W 2013 Phys. Rev. Lett. 111 130502
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[3] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[4] Relativistic motion on Gaussian quantum steering for two-mode localized Gaussian states
Xiao-Long Gong(龚小龙), Shuo Cao(曹硕), Yue Fang(方越), and Tong-Hua Liu(刘统华). Chin. Phys. B, 2022, 31(5): 050402.
[5] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[6] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[7] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[8] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[9] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[10] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[11] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[12] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[13] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[14] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
[15] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
No Suggested Reading articles found!