Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 067702    DOI: 10.1088/1674-1056/24/6/067702
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic and ferroelectric properties of Zn and Mn co-doped BaTiO3

Sangram Keshari Das, Binod Kumar Roul
Institute of Materials Science, Planetarium Building, Acharaya Vihar, Bhubaneswar-751013, Odisha, India
Abstract  This paper reports an approach to obtaining multiferroic properties in co-doped (Zn:Mn) BaTiO3 near room temperature. Interestingly, an unusual magnetic hysteresis loop is observed in the co-doped compositions in which the central portion of the loop is squeezed. However, in the composition Ba0.9Zn0.1Ti0.9Mn0.1O3, a broad magnetic hysteresis loop is observed. Such a magnetic effect is attributed to the coexistence of antiferromagnetic and ferromagnetic exchange interactions in the system. The observation of the above type of magnetic properties is likely to be due to the presence of exchange interactions between Mn ions. A lossy-type of ferroelectric hysteresis loop is also observed in co-doped ceramic compositions near room temperature.
Keywords:  ferroelectrics      ceramic      ferromagnetic  
Received:  26 October 2014      Revised:  07 January 2015      Accepted manuscript online: 
PACS:  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  81.05.Mh (Cermets, ceramic and refractory composites)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
Corresponding Authors:  Binod Kumar Roul     E-mail:  ims@iopb.res.in
About author:  77.84.-s; 81.05.Mh; 76.50.+g

Cite this article: 

Sangram Keshari Das, Binod Kumar Roul Magnetic and ferroelectric properties of Zn and Mn co-doped BaTiO3 2015 Chin. Phys. B 24 067702

[1] Salonitis K, Pandremenos J, Paralikas J and Chryssolouris G 2009 Solid State Commun. 49 1
[15] Apostolova I N, Apostolov A T, Bahoosh S G and Wesselinowa J M 2013 J. Appl. Phys. 113 203904
[16] Phan T L, Zhang P, Grinting D, Yu S C, Nghia N X, Dang N V and Lam V D 2012 J. Appl. Phys. 112 013909
[17] Roul B K 2013 J. Appl. Phys. 113 044101
[22] Ievtushenko A, Khyzhun O, Shtepliuk I, Tkach V, Lazorenko V and Lashkarev G 2013 Acta Phys. Polon. A 124 858
[23] Biesingera M C, Laua L W M, Gerson A R and Smart R S C 2010 Appl. Surf. Sci. 257 887
[24] Shannon R D and Prewitt C T 1969 Acta Cryst. B25 925
[25] Zheng H, Wang J, Lofland S E, Ma Z, Mohaddes-Ardabili L, Zhao T, Salamanca-Riba L, Shinde S R, Ogale S B, Bai F, Viehland D, Jia Y, Schlom D G, Wuttig M, Roytburd A and Ramesh R 2004 Science 303 661
[26] Miyakoshi A, Ueno A and Ichikawa M 2001 Appl. Catal. A 219 249
[27] Xuesong L, Jiqing L, Kun Q, Weixin H and Mengfei L 2009 J. Rare Earths 27 418
[28] Zhao H W, Wang W N, Wang Y J, Zhan W S and Xiao J Q 2002 J. Appl. Phys. 91 6893
[29] Brück S, Sort J, Baltz V, Suriñach S, Muñoz J S and Dieny B 2005 Adv. Mater. 17 2978
[30] Wei X K, Su Y, Sui Y, Zhou Z, Yao Y, Jin C and Yu R 2013 Appl. Phys. Let. 102 242910
[31] Maurer J A 2003 "I: Structure-Function Analysis of the Mechanosensitive Channel of Large Conductance. II. Design of Novel Magnetic Materials using Crystal Engineering", Ph. D Thesis, California Institute of Technology, USA
[32] Yu Q S, Wang L, Yu L, Hua L G, Qiang W Y and Nan C 2010 Trans. Nonferrous Met. Soc. China 20 1911
[33] Das S K, Mishra R N and Roul B K 2014 Appl. Phys. A 116 1897
[34] Jha P A and Jha A K 2012 J. Alloys Compd. 513 580
[35] Ferrarelli M C, Tan C C and Sinclair D C 2011 J. Mater. Chem. 21 6292
[36] Wei X K, Zhang Q H, Li F Y, Jin C Q and Yu R C 2010 J. Alloys Compd. 508 486
[1] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[2] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[3] Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2022, 31(9): 097701.
[4] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[5] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[6] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[7] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[8] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[9] Gilbert damping in the layered antiferromagnet CrCl3
Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧). Chin. Phys. B, 2022, 31(2): 027505.
[10] Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95 μm
Guo-Quan Qian(钱国权), Min-Bo Wu(吴敏波), Guo-Wu Tang(唐国武), Min Sun(孙敏),Dong-Dan Chen(陈东丹), Zhi-Bin Zhang(张志斌), Hui Luo(罗辉), and Qi Qian(钱奇). Chin. Phys. B, 2022, 31(12): 124205.
[11] Yb:CaF2–YF3 transparent ceramics ultrafast laser at dual gain lines
Xiao-Qin Liu(刘晓琴), Qian-Qian Hao(郝倩倩), Jie Liu(刘杰), Dan-Hua Liu(刘丹华), Wei-Wei Li(李威威), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2022, 31(11): 114205.
[12] Terahertz magnetic resonance in MnCr2O4 under high magnetic field
Peng Zhang(张朋), Kaibo He(贺凯博), Zheng Wang(王铮), Shile Zhang(张仕乐), Jianming Dai(戴建明), and Fuhai Su(苏付海). Chin. Phys. B, 2022, 31(10): 107502.
[13] Theoretical investigation of ferromagnetic resonance in a ferromagnetic thin film with external stress anisotropy
Jieyu Zhou(周婕妤), Jianhong Rong(荣建红), Huan Wang(王焕), Guohong Yun(云国宏), Yanan Wang(王娅男), and Shufei Zhang(张舒飞). Chin. Phys. B, 2022, 31(1): 017601.
[14] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[15] Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2
Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2021, 30(9): 097501.
No Suggested Reading articles found!