Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 057302    DOI: 10.1088/1674-1056/24/5/057302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Heat generation by spin-polarized current in a quantum dot connected to spin battery and ferromagnetic lead

Bai Xu-Fang (白絮芳)a, Sun Lian-Liang (孙连亮)b, Chi Feng (迟锋)c d
a College of Physics and Electronic Information, Inner Mongolia National University, Tongliao 028043, China;
b College of Science, North China University of Technology, Beijing 100041, China;
c School of Physical Science and Technology, Inner Mongolia University, Huhehaote 010023, China;
d College of Engineering, Bohai University, Jinzhou 121013, China
Abstract  

We study theoretically the heat originated from electron–phonon coupling in a spintronic device composed of a semiconductor quantum dot attached to one spin battery and one ferromagnetic lead. It is found that the phenomenon of the negative differential of the heat current, which has previously been predicted in the charge-based device, disappears due to the Pauli exclusion principle resulted from the presence of the spin battery. Under some conditions, huge heat in the heat generation induced by resonant phonon emitting processes also disappears in this spin-based device. Furthermore, we find that the ferromagnetism of the lead can be used to effectively adjust the magnitude of the heat current in different dot level ranges. The proposed system is realizable by current technology and may be useful in designing high-efficiency spintronic components.

Keywords:  quantum dot      heat generation      spin battery      ferromagnetic lead  
Received:  24 October 2014      Revised:  05 December 2014      Accepted manuscript online: 
PACS:  73.21.La (Quantum dots)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  73.50.Lw (Thermoelectric effects)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61274101).

Corresponding Authors:  Chi Feng     E-mail:  chifeng@bhu.edu.cn
About author:  73.21.La; 72.15.Jf; 73.50.Lw

Cite this article: 

Bai Xu-Fang (白絮芳), Sun Lian-Liang (孙连亮), Chi Feng (迟锋) Heat generation by spin-polarized current in a quantum dot connected to spin battery and ferromagnetic lead 2015 Chin. Phys. B 24 057302

[1] Dubi Y and Di Ventra M 2011 Rev. Mod. Phys. 83 131
[2] Schwab K, Henriksen E A, Worlock J M and Roules M L 2000 Nature 404 974
[3] Balandin A 2011 Nat. Mater. 10 569
[4] Huang Z, Xu B Q, Chen Y C, Di Ventra M and Tao N J 2006 Nano Lett. 6 1240
[5] Huang Z, Chen F, D'Agosta R, Bennett P A, Di Ventra M and Tao N J 2007 Nat. Nanotechnol. 2 698
[6] Oron-Carl M and Krupke R 2008 Phys. Rev. Lett. 100 127401
[7] Rego L G C and Kirczenow G 1998 Phys. Rev. Lett. 81 232
[8] Blencowe M P 1999 Phys. Rev. B 59 4992
[9] Yamamoto T and Watanabe K 2006 Phys. Rev. Lett. 96 255503
[10] Sun Q F and Xie X C 2007 Phys. Rev. B 75 155306
[11] Lü J T and Wang J S 2007 Phys. Rev. B 76 165418
[12] Wu B H and Cao J C 2009 J. Phys.: Condens. Matter 21 245301
[13] Wang J S, Wang J and Lü J T 2008 Eur. Phys. J. B 62 381
[14] Li N B, Ren J, Wang L, Zhang G, Hänggi P and Li B W 2012 Rev. Mod. Phys. 84 1045
[15] Fujisawa T, Oosterkamp T H, van der Wiel W G, Broer B W, Aguado R, Tarucha S and Kouwenhoven L P 1998 Science 282 932
[16] Park H, Park J, Lim A K L, Anderson E H, Alivisatos A P and McEuen P L 2000 Nature 407 57
[17] LeRoy B J, Lemay S G, Kong J and Dekker C 2004 Nature 432 371
[18] LeRoy B J, Kong J, Pahilwani V K, Dekker C and Lemay S G 2005 Phys. Rev. B 72 075413
[19] Liu J, Song J T, Sun Q F and Xie X C 2009 Phys. Rev. B 79 161309(R)
[20] Pei W, Xie X C and Sun Q F 2012 J. Phys.: Condens. Matter 24 415302
[21] Pei W and Sun Q F 2012 J. Appl. Phys. 112 124306
[22] Zhou L L 2011 Chin. Phys. Lett. 28 128504
[23] Zhou L L, Li S S, Wei J N and Wang S Q 2011 Phys. Rev. B 83 195303
[24] Zhou L L, Li S S and Zeng Z Y 2009 Chin. Phys. Lett. 26 037304
[25] Deng Y X, Yan X H, Xiao Y and Tang N S 2010 Phys. Lett. A 374 4375
[26] Wang Q, Xie H, Jiao H and Nie Y H 2013 Europhys. Lett. 101 47008
[27] Chen Q and Zhang Y M 2010 Commun. Theor. Phys. 54 171
[28] Chen Q and Deng Y H 2011 Commun. Theor. Phys. 56 517
[29] Chen Q, Tang L M, Chen K Q and Zhao H K 2013 J. Appl. Phys. 114 084301
[30] Chi F, Zheng J, Liu Y S and Guo Y 2012 Appl. Phys. Lett. 100 233106
[31] Li B X, Zheng J and Chi F 2014 Chin. Phys. Lett. 31 057302
[32] Guo Y, Sun L L and Chi F 2014 Commun. Theor. Phys. 62 423
[33] Johnson M and Silsbee R H 1987 Phys. Rev. B 35 4959
[34] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217
[35] Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S and Saitoh E 2008 Nature 455 778
[36] Le Breton J C, Sharma S, Saito H, Yuasa S and Jansen R 2011 Nature 475 82
[37] van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2003 Rev. Mod. Phys. 75 1
[38] Guo Y, Gu B L, Yu J Z, Zeng Z and Kawazoe Y 1998 J. Appl. Phys. 84 918
[39] Guo Y, Wang H, Gu B L and Kawazoe Y 2000 Phys. Rev. B 61 1728
[40] Guo Y, Qin J H, Chen X Y and Gu B L 2003 Chin. Phys. Lett. 20 1124
[41] Guo Y, Shang C E and Chen X Y 2005 Phys. Rev. B 72 045356
[42] Hamaya K, Masubuchi S, Kawamura M, Machida T, Jung M, Shibata K, Hirakawa K, Taniyama T, Ishida S and Arakawa Y 2007 Appl. Phys. Lett 90 053108
[43] Zhang Y T, Guo Y and Li Y C 2005 Phys. Rev. B 72 125334
[44] Lv H F and Guo Y 2008 Appl. Phys. Lett. 92 062109
[45] Press D, Ladd T D, Zhang B Y and Yamamoto Y 2008 Nature 456 218.
[46] Ying Y B and Jin G J 2010 Appl. Phys. Lett. 96 093104
[47] Frolov S M, Venkatesan A, Yu W, Folk J A and Wegscheider W 2009 Phys. Rev. Lett. 102 116802
[48] Frolov S M, Lüscher S, Yu W, Ren Y, Folk J A and Wegscheider W 2009 Nature 458 868
[49] Chi F and Sun Q F 2010 Phys. Rev. B 81 075310
[50] Sun Q F, Guo H and Wang J 2003 Phys. Rev. Lett. 90 258301
[51] Long W, Sun Q F, Guo H and Wang J 2003 Appl. Phys. Lett. 83 1397
[52] Wang D K, Sun Q F and Guo H 2004 Phys. Rev. B 69 205312
[53] Chen Z Z, Lü R and Zhu B F 2005 Phys. Rev. B 71 165324
[54] Wang R Q, Zhou Y Q, Wang B G and Xing D Y 2007 Phys. Rev. B 75 045318
[55] Liu Y S, Chen H, Fan X H and Yang X F 2006 Phys. Rev. B 73 115310
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[9] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[10] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[11] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!