CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Heat generation by spin-polarized current in a quantum dot connected to spin battery and ferromagnetic lead |
Bai Xu-Fang (白絮芳)a, Sun Lian-Liang (孙连亮)b, Chi Feng (迟锋)c d |
a College of Physics and Electronic Information, Inner Mongolia National University, Tongliao 028043, China;
b College of Science, North China University of Technology, Beijing 100041, China;
c School of Physical Science and Technology, Inner Mongolia University, Huhehaote 010023, China;
d College of Engineering, Bohai University, Jinzhou 121013, China |
|
|
Abstract We study theoretically the heat originated from electron–phonon coupling in a spintronic device composed of a semiconductor quantum dot attached to one spin battery and one ferromagnetic lead. It is found that the phenomenon of the negative differential of the heat current, which has previously been predicted in the charge-based device, disappears due to the Pauli exclusion principle resulted from the presence of the spin battery. Under some conditions, huge heat in the heat generation induced by resonant phonon emitting processes also disappears in this spin-based device. Furthermore, we find that the ferromagnetism of the lead can be used to effectively adjust the magnitude of the heat current in different dot level ranges. The proposed system is realizable by current technology and may be useful in designing high-efficiency spintronic components.
|
Received: 24 October 2014
Revised: 05 December 2014
Accepted manuscript online:
|
PACS:
|
73.21.La
|
(Quantum dots)
|
|
72.15.Jf
|
(Thermoelectric and thermomagnetic effects)
|
|
73.50.Lw
|
(Thermoelectric effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61274101). |
Corresponding Authors:
Chi Feng
E-mail: chifeng@bhu.edu.cn
|
About author: 73.21.La; 72.15.Jf; 73.50.Lw |
Cite this article:
Bai Xu-Fang (白絮芳), Sun Lian-Liang (孙连亮), Chi Feng (迟锋) Heat generation by spin-polarized current in a quantum dot connected to spin battery and ferromagnetic lead 2015 Chin. Phys. B 24 057302
|
[1] |
Dubi Y and Di Ventra M 2011 Rev. Mod. Phys. 83 131
|
[2] |
Schwab K, Henriksen E A, Worlock J M and Roules M L 2000 Nature 404 974
|
[3] |
Balandin A 2011 Nat. Mater. 10 569
|
[4] |
Huang Z, Xu B Q, Chen Y C, Di Ventra M and Tao N J 2006 Nano Lett. 6 1240
|
[5] |
Huang Z, Chen F, D'Agosta R, Bennett P A, Di Ventra M and Tao N J 2007 Nat. Nanotechnol. 2 698
|
[6] |
Oron-Carl M and Krupke R 2008 Phys. Rev. Lett. 100 127401
|
[7] |
Rego L G C and Kirczenow G 1998 Phys. Rev. Lett. 81 232
|
[8] |
Blencowe M P 1999 Phys. Rev. B 59 4992
|
[9] |
Yamamoto T and Watanabe K 2006 Phys. Rev. Lett. 96 255503
|
[10] |
Sun Q F and Xie X C 2007 Phys. Rev. B 75 155306
|
[11] |
Lü J T and Wang J S 2007 Phys. Rev. B 76 165418
|
[12] |
Wu B H and Cao J C 2009 J. Phys.: Condens. Matter 21 245301
|
[13] |
Wang J S, Wang J and Lü J T 2008 Eur. Phys. J. B 62 381
|
[14] |
Li N B, Ren J, Wang L, Zhang G, Hänggi P and Li B W 2012 Rev. Mod. Phys. 84 1045
|
[15] |
Fujisawa T, Oosterkamp T H, van der Wiel W G, Broer B W, Aguado R, Tarucha S and Kouwenhoven L P 1998 Science 282 932
|
[16] |
Park H, Park J, Lim A K L, Anderson E H, Alivisatos A P and McEuen P L 2000 Nature 407 57
|
[17] |
LeRoy B J, Lemay S G, Kong J and Dekker C 2004 Nature 432 371
|
[18] |
LeRoy B J, Kong J, Pahilwani V K, Dekker C and Lemay S G 2005 Phys. Rev. B 72 075413
|
[19] |
Liu J, Song J T, Sun Q F and Xie X C 2009 Phys. Rev. B 79 161309(R)
|
[20] |
Pei W, Xie X C and Sun Q F 2012 J. Phys.: Condens. Matter 24 415302
|
[21] |
Pei W and Sun Q F 2012 J. Appl. Phys. 112 124306
|
[22] |
Zhou L L 2011 Chin. Phys. Lett. 28 128504
|
[23] |
Zhou L L, Li S S, Wei J N and Wang S Q 2011 Phys. Rev. B 83 195303
|
[24] |
Zhou L L, Li S S and Zeng Z Y 2009 Chin. Phys. Lett. 26 037304
|
[25] |
Deng Y X, Yan X H, Xiao Y and Tang N S 2010 Phys. Lett. A 374 4375
|
[26] |
Wang Q, Xie H, Jiao H and Nie Y H 2013 Europhys. Lett. 101 47008
|
[27] |
Chen Q and Zhang Y M 2010 Commun. Theor. Phys. 54 171
|
[28] |
Chen Q and Deng Y H 2011 Commun. Theor. Phys. 56 517
|
[29] |
Chen Q, Tang L M, Chen K Q and Zhao H K 2013 J. Appl. Phys. 114 084301
|
[30] |
Chi F, Zheng J, Liu Y S and Guo Y 2012 Appl. Phys. Lett. 100 233106
|
[31] |
Li B X, Zheng J and Chi F 2014 Chin. Phys. Lett. 31 057302
|
[32] |
Guo Y, Sun L L and Chi F 2014 Commun. Theor. Phys. 62 423
|
[33] |
Johnson M and Silsbee R H 1987 Phys. Rev. B 35 4959
|
[34] |
Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217
|
[35] |
Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S and Saitoh E 2008 Nature 455 778
|
[36] |
Le Breton J C, Sharma S, Saito H, Yuasa S and Jansen R 2011 Nature 475 82
|
[37] |
van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2003 Rev. Mod. Phys. 75 1
|
[38] |
Guo Y, Gu B L, Yu J Z, Zeng Z and Kawazoe Y 1998 J. Appl. Phys. 84 918
|
[39] |
Guo Y, Wang H, Gu B L and Kawazoe Y 2000 Phys. Rev. B 61 1728
|
[40] |
Guo Y, Qin J H, Chen X Y and Gu B L 2003 Chin. Phys. Lett. 20 1124
|
[41] |
Guo Y, Shang C E and Chen X Y 2005 Phys. Rev. B 72 045356
|
[42] |
Hamaya K, Masubuchi S, Kawamura M, Machida T, Jung M, Shibata K, Hirakawa K, Taniyama T, Ishida S and Arakawa Y 2007 Appl. Phys. Lett 90 053108
|
[43] |
Zhang Y T, Guo Y and Li Y C 2005 Phys. Rev. B 72 125334
|
[44] |
Lv H F and Guo Y 2008 Appl. Phys. Lett. 92 062109
|
[45] |
Press D, Ladd T D, Zhang B Y and Yamamoto Y 2008 Nature 456 218.
|
[46] |
Ying Y B and Jin G J 2010 Appl. Phys. Lett. 96 093104
|
[47] |
Frolov S M, Venkatesan A, Yu W, Folk J A and Wegscheider W 2009 Phys. Rev. Lett. 102 116802
|
[48] |
Frolov S M, Lüscher S, Yu W, Ren Y, Folk J A and Wegscheider W 2009 Nature 458 868
|
[49] |
Chi F and Sun Q F 2010 Phys. Rev. B 81 075310
|
[50] |
Sun Q F, Guo H and Wang J 2003 Phys. Rev. Lett. 90 258301
|
[51] |
Long W, Sun Q F, Guo H and Wang J 2003 Appl. Phys. Lett. 83 1397
|
[52] |
Wang D K, Sun Q F and Guo H 2004 Phys. Rev. B 69 205312
|
[53] |
Chen Z Z, Lü R and Zhu B F 2005 Phys. Rev. B 71 165324
|
[54] |
Wang R Q, Zhou Y Q, Wang B G and Xing D Y 2007 Phys. Rev. B 75 045318
|
[55] |
Liu Y S, Chen H, Fan X H and Yang X F 2006 Phys. Rev. B 73 115310
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|