Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 056806    DOI: 10.1088/1674-1056/24/5/056806
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Efficiency droop suppression in GaN-based light-emitting diodes by chirped multiple quantum well structure at high current injection

Zhao Yu-Kun (赵宇坤)a b, Li Yu-Feng (李虞锋)a b, Huang Ya-Ping (黄亚平)a b, Wang Hong (王宏)a b, Su Xi-Lin (苏喜林)c, Ding Wen (丁文)a b, Yun Feng (云峰)a b c
a Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Provincial Key Laboratory of Photonics & Information Technology, Xi'an Jiaotong University, Xi'an 710049, China;
b Solid-State Lighting Engineering Research Center, Xi'an Jiaotong University, Xi'an 710049, China;
c Shaanxi Supernova Lighting Technology Co. Ltd, Xi'an 710075, China
Abstract  

Gallium nitride (GaN) based light-emitting diodes (LEDs) with chirped multiple quantum well (MQW) structures have been investigated experimentally and numerically in this paper. Compared to conventional LEDs with uniform quantum wells (QWs), LEDs with chirped MQW structures have better internal quantum efficiency (IQE) and carrier injection efficiency. The droop ratios of LEDs with chirped MQW structures show a remarkable improvement at 600 mA/mm2, reduced down from 28.6% (conventional uniform LEDs) to 23.7% (chirped MQWs-a) and 18.6% (chirped MQWs-b), respectively. Meanwhile, the peak IQE increases from 76.9% (uniform LEDs) to 83.7% (chirped MQWs-a) and 88.6% (chirped MQWs-b). The reservoir effect of chirped MQW structures is the significant reason as it could increase hole injection efficiency and radiative recombination. The leakage current and Auger recombination of chirped MQW structures can also be suppressed. Furthermore, the chirped MQWs-b structure with lower potential barriers can enhance the reservoir effect and obtain further improvement of the carrier injection efficiency and radiative recombination, as well as further suppressing efficiency droop.

Keywords:  efficiency droop      chirped multiple quantum well structure      hole injection      light-emitting diode  
Received:  26 October 2014      Revised:  23 December 2014      Accepted manuscript online: 
PACS:  68.65.Fg (Quantum wells)  
  85.60.Jb (Light-emitting devices)  
  78.55.Cr (III-V semiconductors)  
  87.15.A- (Theory, modeling, and computer simulation)  
Fund: 

Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA032608), the Key Laboratory for Mechanical Behavior of Material of Xi'an Jiaotong University, China (Grant No. 20121201), and the Fundamental Research Funds for the Central Universities, China.

Corresponding Authors:  Yun Feng     E-mail:  fyun2010@mail.xjtu.edu.cn
About author:  68.65.Fg; 85.60.Jb; 78.55.Cr; 87.15.A-

Cite this article: 

Zhao Yu-Kun (赵宇坤), Li Yu-Feng (李虞锋), Huang Ya-Ping (黄亚平), Wang Hong (王宏), Su Xi-Lin (苏喜林), Ding Wen (丁文), Yun Feng (云峰) Efficiency droop suppression in GaN-based light-emitting diodes by chirped multiple quantum well structure at high current injection 2015 Chin. Phys. B 24 056806

[1] Piprek J 2010 Phys. Status Solidi A 207 2217
[2] Yang Y, Cao X A and Yan C 2008 IEEE Trans. Electron Devices 55 1771
[3] Sun W, Shatalov M, Deng J, Hu X, Yang J, Lunev A, Bilenko Y, Shur M and Gaska R 2010 Appl. Phys. Lett. 96 061102
[4] Delaney K T, Rinke P and Walle C G V 2009 Appl. Phys. Lett. 94 191109
[5] Lu T P, Li S T, Liu C, Zhang K, Xu Y Q, Tong J H, Wu L J, Wang H L, Yang X D, Yin Y, Xiao G W and Zhou Y G 2012 Appl. Phys. Lett. 100 141106
[6] Hader J, Moloney J V and Koch S W 2010 Appl. Phys. Lett. 96 221106
[7] Li Y F, Yun F, Su X L, Liu S, Ding W and Hou X 2014 J. Appl. Phys. 116 123101
[8] Guo W, Zhang M, Bhattacharya P and Heo J 2011 Nano Lett. 11 1434
[9] Chang J Y and Kuo Y K 2013 Phys. Status Solidi A 210 1103
[10] Wang T H and Xu J L 2012 Chin. Phys. B 21 128504
[11] Chen Z, Yang W, Liu L, Wan C H, Li L, He Y F, L N Y, Wang L, Li D, Chen W H and Hu X D 2012 Chin. Phys. B 21 108505
[12] Zakheim D A, Pavluchenko A S, Bauman D A, Bulashevich K A, Khokhlev O V and Karpov S Y 2012 Phys. Status Solidi A 209 456
[13] Yin Y A, Wang N Y, Fan G H and Li S T 2014 IEEE Trans. Electron Devices 61 2849
[14] Chang Y A, Kuo Y T, Chang J Y and Kuo Y K 2012 Opt. Lett. 37 2205
[15] Li X, Okur S, Zhang F, Avrutin V, Özgür Ü, Morkoc H, Hong S M, Yen S H, Hsu T C and Matulionis A 2012 J. Appl. Phys. 111 063112
[16] Zhang L, Ding K, Liu N X, Wei T B, Ji X L, Ma P, Yan J C, Wang J X, Zeng Y P and Li J M 2011 Appl. Phys. Lett. 98 101110
[17] Du C H, Ma Z G, Zhou J M, Lu T P, Jiang Y, Jia H Q, Liu W M and Chen H 2014 Appl. Phys. Lett. 104 151102
[18] Römer F and Witzigmann B 2014 Opt. Express 22 A1440
[19] Iveland J, Martinelli L, Peretti J, Speck J S and Weisbuch C 2013 Phys. Rev. Lett. 110 177406
[1] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[2] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[3] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[4] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[5] Large-area fabrication: The next target of perovskite light-emitting diodes
Hang Su(苏杭), Kun Zhu(朱坤), Jing Qin(钦敬), Mengyao Li(李梦瑶), Yulin Zuo(左郁琳), Yunzheng Wang(王允正), Yinggang Wu(吴迎港), Jiawei Cao(曹佳维), and Guolong Li(李国龙). Chin. Phys. B, 2021, 30(8): 088502.
[6] Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-Ome
Mu-Zhen Li(李慕臻), Fei-Yan Li(李飞雁), Qun Zhang(张群), Kai Zhang(张凯), Yu-Zhi Song(宋玉志), Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Li-Li Lin(蔺丽丽). Chin. Phys. B, 2021, 30(12): 123302.
[7] Dependence of limited radiative recombination rate of InGaN-based light-emitting diode on lattice temperature with high injection
Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Zhi-Jue Quan(全知觉), Jun-Lin Liu(刘军林), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047802.
[8] Reliability of organic light-emitting diodes in low-temperature environment
Saihu Pan(潘赛虎), Zhiqiang Zhu(朱志强), Kangping Liu(刘康平), Hang Yu(于航), Yingjie Liao(廖英杰), Bin Wei(魏斌), Redouane Borsali, and Kunping Guo(郭坤平). Chin. Phys. B, 2020, 29(12): 128503.
[9] Tetraalkyl-substituted zinc phthalocyanines used as anode buffer layers for organic light-emitting diodes
Qian Chen(陈潜), Songhe Yang(杨松鹤), Lei Dong(董磊), Siyuan Cai(蔡思源), Jiaju Xu(许家驹), Zongxiang Xu(许宗祥). Chin. Phys. B, 2020, 29(1): 017302.
[10] Infrared light-emitting diodes based on colloidal PbSe/PbS core/shell nanocrystals
Byung-Ryool Hyun, Mikita Marus, Huaying Zhong(钟华英), Depeng Li(李德鹏), Haochen Liu(刘皓宸), Yue Xie(谢阅), Weon-kyu Koh, Bing Xu(徐冰), Yanjun Liu(刘言军), Xiao Wei Sun(孙小卫). Chin. Phys. B, 2020, 29(1): 018503.
[11] Monolithic semi-polar (1101) InGaN/GaN near white light-emitting diodes on micro-striped Si (100) substrate
Qi Wang(王琦), Guo-Dong Yuan(袁国栋), Wen-Qiang Liu(刘文强), Shuai Zhao(赵帅), Lu Zhang(张璐), Zhi-Qiang Liu(刘志强), Jun-Xi Wang(王军喜), Jin-Min Li(李晋闽). Chin. Phys. B, 2019, 28(8): 087802.
[12] Enhanced performance of AlGaN-based ultraviolet light-emitting diodes with linearly graded AlGaN inserting layer in electron blocking layer
Guang Li(李光), Lin-Yuan Wang(王林媛), Wei-Dong Song(宋伟东), Jian Jiang(姜健), Xing-Jun Luo(罗幸君), Jia-Qi Guo(郭佳琦), Long-Fei He(贺龙飞), Kang Zhang(张康), Qi-Bao Wu(吴启保), Shu-Ti Li(李述体). Chin. Phys. B, 2019, 28(5): 058502.
[13] Effects of hole-injection through side-walls of large V-pits on efficiency droop in Ⅲ-nitride LEDs
Dong-Yan Zhang(张东炎), Jie Zhang(张洁), Xiao-Feng Liu(刘晓峰), Sha-Sha Chen(陈沙沙), Hui-Wen Li(李慧文), Ming-Qing Liu(刘明庆), Da-Qian Ye(叶大千), Du-Xiang Wang(王笃祥). Chin. Phys. B, 2019, 28(4): 048501.
[14] Double superlattice structure for improving the performance of ultraviolet light-emitting diodes
Yan-Li Wang(王燕丽), Pei-Xian Li(李培咸), Sheng-Rui Xu(许晟瑞), Xiao-Wei Zhou(周小伟), Xin-Yu Zhang(张心禹), Si-Yu Jiang(姜思宇), Ru-Xue Huang(黄茹雪), Yang Liu(刘洋), Ya-Li Zi(訾亚丽), Jin-Xing Wu(吴金星), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(3): 038502.
[15] InP quantum dots-based electroluminescent devices
Qianqian Wu(吴倩倩), Fan Cao(曹璠), Lingmei Kong(孔令媚), Xuyong Yang(杨绪勇). Chin. Phys. B, 2019, 28(11): 118103.
No Suggested Reading articles found!