CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Tetraalkyl-substituted zinc phthalocyanines used as anode buffer layers for organic light-emitting diodes |
Qian Chen(陈潜), Songhe Yang(杨松鹤), Lei Dong(董磊), Siyuan Cai(蔡思源), Jiaju Xu(许家驹), Zongxiang Xu(许宗祥) |
Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China |
|
|
Abstract Two soluble tetraalkyl-substituted zinc phthalocyanines (ZnPcs) for use as anode buffer layer materials in tris(8-hydroxyquinoline)aluminum (Alq3)-based organic light-emitting diodes (OLEDs) are presented in this work. The hole-blocking properties of these ZnPc layers slowed the hole injection process into the Alq3 emissive layer greatly and thus reduced the production of unstable cationic Alq3 (Alq3+) species. This led to the enhanced brightness and efficiency when compared with the corresponding properties of OLEDs based on the popular poly-(3, 4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) buffer layer. Furthermore, because of the high thermal and chemical stabilities of these ZnPcs, a nonaqueous film fabrication process was realized together with improved charge balance in the OLEDs and enhanced OLED lifetimes.
|
Received: 15 July 2019
Revised: 15 November 2019
Accepted manuscript online:
|
PACS:
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
73.90.+f
|
(Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)
|
|
Fund: Project supported by the Shenzhen Personal Maker Project, China (Grant No. GRCK2017082316173208), the Shenzhen Overseas High-level Talents Innovation Plan of Technical Innovation, China (Grant No. KQJSCX20180323140712012), and the Special Funds for the Development of Strategic Emerging Industries in Shenzhen, China (Grant No. JCJY20170818154457845). |
Corresponding Authors:
Jiaju Xu, Zongxiang Xu
E-mail: xujj@sustech.edu.cn;xuzx@sustech.edu.cn
|
Cite this article:
Qian Chen(陈潜), Songhe Yang(杨松鹤), Lei Dong(董磊), Siyuan Cai(蔡思源), Jiaju Xu(许家驹), Zongxiang Xu(许宗祥) Tetraalkyl-substituted zinc phthalocyanines used as anode buffer layers for organic light-emitting diodes 2020 Chin. Phys. B 29 017302
|
[1] |
Tang C W and VanSlyke S A 1987 Appl. Phys. Lett. 51 913
|
[2] |
So F and Kondakov D 2010 Adv. Mater. 22 3762
|
[3] |
Xie G, Meng Y, Wu F, Tao C, Zhang D, Liu M, Xue Q, Chen W and Zhao Y 2008 Appl. Phys. Lett. 92 093305
|
[4] |
Roy C K, Jaewon L, Neetu C, Alok G, Xuezhong J, Fabrice A and Franky S 2009 Adv. Funct. Mater. 19 491
|
[5] |
Slyke S A V, Chen C H and Tang C W 1996 Appl. Phys. Lett. 69 2160
|
[6] |
Aziz H, Popovic Z D, Hu N X, Hor A M and Xu G 1999 Science 283 1900
|
[7] |
Aziz H and Popovic Z D 2004 Chem. Mater. 16 4522
|
[8] |
Feng Y, Xu J, Shan H, Dong L, Sun X, Hu Q, Wang Y, Roy V A L and Xu Z X 2017 Org. Electron. 51 257
|
[9] |
Xu J, Wang Y, Chen Q, Lin Y, Shan H, Roy V A L and Xu Z 2016 J. Mater. Chem. C 4 7377
|
[10] |
Lee H, Lee J, Yi Y, Cho S W and Kim J W 2015 J. Appl. Phys. 117 035503
|
[11] |
Jou J H, Kumar S, Agrawal A, Li T H and Sahoo S 2015 J. Mater. Chem. C 3 2974
|
[12] |
Choi Y J, Gong S C, Kang K M and Park H H 2014 J. Mater. Chem. C 2 8344
|
[13] |
Liu R, Xu C, Biswas R, Shinar J and Shinar R 2011 Appl. Phys. Lett. 99 093305
|
[14] |
Meyer J, Hamwi S, Bülow T, Johannes H H, Riedl T and Kowalsky W 2007 Appl. Phys. Lett. 91 113506
|
[15] |
Zhu X L, Sun J X, Peng H J, Meng Z G, Wong M and Kwok H S 2005 Appl. Phys. Lett. 87 153508
|
[16] |
Zhu Y K, Zhong J, Lei S Y, Chen H, Shao S S and Lin Y 2017 Chin. Phys. B 26 087302
|
[17] |
Mu X, Wu X M, Hua Y L, Jiao Z Q, Shen L Y, Su Y J, Bai J J, Bi W T, Yin S G and Zheng J J 2013 Chin. Phys. B 22 027805
|
[18] |
Zhang L, Zhou D Y, Wang B, Shi X B, Hu Y, Wang Z K and Liao L S 2016 Appl. Phys. Lett. 109 173302
|
[19] |
Leem D S, Park H D, Kang J W, Lee J H, Kim J W and Kim J J 2007 Appl. Phys. Lett. 91 011113
|
[20] |
Chan I M, Hsu T Y and Hong F C 2002 Appl. Phys. Lett. 81 1899
|
[21] |
Cook J H, Al-Attar H A and Monkman A P 2014 Org. Electron. 15 245
|
[22] |
Roman L S, Mammo W, Pettersson L A A, Andersson M R and Inganäs O 1998 Adv. Mater. 10 774
|
[23] |
Kim J S, Friend R H, Grizzi I and Burroughes J H 2005 Appl. Phys. Lett. 87 023506
|
[24] |
Wong K W, Yip H L, Luo Y, Wong K Y, Lau W M, Low K H, Chow H F, Gao Z Q, Yeung W L and Chang C C 2002 Appl. Phys. Lett. 80 2788
|
[25] |
Wang Y L, Xu J J, Lin Y W, Chen Q, Shan H Q, Yan Y, Roy V A L and Xu Z X 2015 AIP Adv. 5 107205
|
[26] |
Mori T, Mitsuoka T, Ishii M, Fujikawa H and Taga Y 2002 Appl. Phys. Lett. 80 3895
|
[27] |
Guo R D, Yue S Z, Wang P, Chen Y, Zhao Y and Liu S Y 2013 Chin. Phys. B 22 0127304
|
[28] |
Qiu Y, Gao Y, Wei P and Wang L 2002 Appl. Phys. Lett. 80 2628
|
[29] |
Chen S F and Wang C W 2004 Appl. Phys. Lett. 85 765
|
[30] |
Deng Z, Lü Z, Chen Y, Yin Y, Zou Y, Xiao J and Wang Y 2013 Solid-State Electron. 89 22
|
[31] |
Xu J, Wang Y, Shan H, Lin Y, Chen Q, Roy V A L and Xu Z 2016 ACS Appl. Mater. Interfaces 8 18991
|
[32] |
Wang Y, Shan H, Sun X, Dong L, Feng Y, Hu Q, Ye W, Roy V A L, Xu J and Xu Z X 2018 Org. Electron. 55 15
|
[33] |
Shaoqiang D, Hongkun T, Lizhen H, Jidong Z, Donghang Y, Yanhou G and Fosong W 2011 Adv. Mater. 23 2850
|
[34] |
Hong W, Sun B, Aziz H, Park W T, Noh Y Y and Li Y 2012 Chem. Commun. 48 8413
|
[35] |
Zheng L, Xu J, Feng Y, Shan H, Fang G and Xu Z X 2018 J. Mater. Chem. C 6 11471
|
[36] |
Luo Y, Aziz H, Popovic Z D and Xu G 2007 J. Appl. Phys. 101 034510
|
[37] |
Tadayyon S M, Grandin H M, Griffiths K, Norton P R, Aziz H and Popovic Z D 2004 Org. Electron. 5 157
|
[38] |
Vestweber H and Rieß W 1997 Synth. Met. 91 181
|
[39] |
Hwang J, Choi H K, Moon J, Kim T Y, Shin J W, Joo C W, Han J H, Cho D H, Huh J W, Choi S Y, Lee J I and Chu H Y 2012 Appl. Phys. Lett. 100 133304
|
[40] |
Kalinowski J, Stampor W, Mężyk J, Cocchi M, Virgili D, Fattori V and Di Marco P 2002 Phys. Rev. B 66 235321
|
[41] |
Kalinowski J, Stampor W, Szmytkowski J, Virgili D, Cocchi M, Fattori V and Sabatini C 2006 Phys. Rev. B 74 085316
|
[42] |
Anderson J D, McDonald E M, Lee P A, Anderson M L, Ritchie E L, Hall H K, Hopkins T, Mash E A, Wang J, Padias A, Thayumanavan S, Barlow S, Marder S R, Jabbour G E, Shaheen S, Kippelen B, Peyghambarian N, Wightman R M and Armstrong N R 1998 J. Am. Chem. Soc. 120 9646
|
[43] |
Hao J, Deng Z and Yang S 2006 Displays 27 108
|
[44] |
Nguyen T P and de Vos S A 2004 Appl. Surf. Sci. 221 330
|
[45] |
Cacialli F, Kim J S, Brown T M, Morgado J, Granström M, Friend R H, Gigli G, Cingolani R, Favaretto L, Barbarella G, Daik R and Feast W J 2000 Synth. Met. 109 7
|
[46] |
Knox J E, Halls M D, Hratchian H P and Bernhard Schlegel H 2006 Phys. Chem. Chem. Phys. 8 1371
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|