Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 047401    DOI: 10.1088/1674-1056/24/4/047401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermal and thermoelectric response from Keldysh formalism with application to gapped Dirac fermions

Zhu Guo-Bao (朱国宝)a b, Yang Hui-Min (杨慧敏)a, Yang Sheng-Yuan (杨声远)c
a Department of Physics and Electronic Engineering, Heze University, Heze 274015, China;
b Institute of Theoretical Physics, Heze University, Heze 274015, China;
c Engineering Product Development, Singapore University of Technology and Design, Singapore 138682, Singapore
Abstract  

Based on the Keldysh Green's functions theory, we present a general formula of the thermal and thermoelectric transport. In the clean limit, our formula recovers the previous results obtained from the semiclassical transport theory. In our approach, we propose an appropriate energy current operator and electric current operator, and the unphysical divergence from the direct application of the Kubo formula is eliminated. As an application, we study the thermal and the thermoelectric Hall conductivities of a gapped Dirac fermion model in the presence of impurity scattering.

Keywords:  thermal      thermoelectric      Green'      s function  
Received:  08 November 2014      Revised:  11 December 2014      Accepted manuscript online: 
PACS:  74.25.fc (Electric and thermal conductivity)  
  73.50.Lw (Thermoelectric effects)  
  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  73.50.Bk (General theory, scattering mechanisms)  
Fund: 

Project supported by the Special Funds of the National Natural Science Foundation of China (Grant No. 11447145) and the Doctoral Program of Heze University, Shandong Province, China (Grant No. XY14B002).

Corresponding Authors:  Zhu Guo-Bao     E-mail:  zhuguobao@gmail.com

Cite this article: 

Zhu Guo-Bao (朱国宝), Yang Hui-Min (杨慧敏), Yang Sheng-Yuan (杨声远) Thermal and thermoelectric response from Keldysh formalism with application to gapped Dirac fermions 2015 Chin. Phys. B 24 047401

[1] Dubi Y and Ventra M D 2011 Rev. Mod. Phys. 83 131
[2] Xiao X X, Xie W J, Tang X F and Zhang Q J 2011 Chin. Phys. B 20 087201
[3] Wu J Bo, Tang X G, Jia Z H, Chen D G, Jiang Y P and Liu Q X 2012 Acta Phys. Sin. 61 207702 (in Chinese)
[4] Meng D Y, Shen L X, Shai X X, Dong G J and Deng S K 2013 Acta Phys. Sin. 62 247401 (in Chinese)
[5] Qin T, Niu Q and Shi J 2011 Phys. Rev. Lett. 107 236601
[6] Matsumoto R and Murakami S 2011 Phys. Rev. Lett. 106 197202
[7] Matsumoto R and Murakami S 2011 Phys. Rev. B 84 184406
[8] Smrčka L and Strěda P 1977 J. Phys. C: Solid State Phys. 10 2153
[9] Vafek O, Melikyan A and Tečnović Z 2001 Phys. Rev. B 64 224508
[10] Onoda S, Sugimoto N and Nagaosa N 2006 Phys. Rev. Lett. 97 126602
[11] Onoda S, Sugimoto N and Nagaosa N 2008 Phys. Rev. B 77 165103
[12] Michaeli K and Finkel'stein A M 2009 Phys. Rev. B 80 115111
[13] Michaeli K and Finkel'stein A M 2009 Phys. Rev. B 80 214516
[14] Kovalev A A, Tserkovnyak Y, Vyborny K and Sinova J 2009 Phys. Rev. B 79 195129
[15] Kovalev A A, Sinova J and Tserkovnyak Y 2010 Phys. Rev. Lett. 105 036601
[16] Zhu G B, Yang S A, Fang C, Liu W M and Yao Y G 2012 Phys. Rev. B 86 214415
[17] Luttinger J M 1964 Phys. Rev. 135 A1505
[18] Rammer J and Smith H 1986 Rev. Mod. Phys. 58 323
[19] Lu H Z, Shi J R and Shen S Q 2011 Phys. Rev. Lett. 107 076801
[20] Krstajić P M and Vasilopoulos P 2012 Phys. Rev. B 86 115432
[21] Misawa T, Yokoyama T and Murakami S 2011 Phys. Rev. B 84 165407
[22] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539
[23] Sinitsyn N A, MacDonald A H, Jungwirth T, Dugaev V K and Sinova J 2007 Phys. Rev. B 75 045315
[24] Yang S A, Pan H, Yao Y and Niu Q 2011 Phys. Rev. B 83 125122
[1] Guide and control of thermal conduction with isotropic thermodynamic parameters based on a rotary-concentrating device
Mao Liu(刘帽)†, Quan Yan(严泉). Chin. Phys. B, 2023, 32(4): 044402.
[2] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[3] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[4] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[5] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[6] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[7] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[8] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[9] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[10] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[11] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[12] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[13] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[14] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[15] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
No Suggested Reading articles found!