CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Radial collapse and physical mechanism of carbon nanotube with divacancy and 5-8-5 defects |
Zhang Ya-Ping (张亚萍)a, Ling Cui-Cui (凌翠翠)a b, Li Gui-Xia (李桂霞)a c, Zhu Hai-Feng (朱海丰)a, Zhang Meng-Yu (张梦禹)a |
a College of Science, China University of Petroleum, Qingdao 266580, China;
b State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China;
c Science and Information Science College, Qingdao Agricultural University, Qingdao 266109, China |
|
|
Abstract By employing molecular mechanics and molecular dynamics simulations, we investigate the radial collapses and elasticities of different chiral single-walled carbon nanotubes (SWCNTs) with divacancy, and 5-8-5 defects. It is found that divacancy and 5-8-5 defect can reduce the collapse pressure (Pc) of SWCNT (10, 10) while 5-8-5 defect can greatly increase Pc of SWCNT (17, 0). For example, 5-8-5 defect can make Pc of SWCNT (17, 0) increase by 500%. A model is established to understand the effects of chirality, divacancy, and 5-8-5 defect on radial collapse of SWCNTs. The results are particularly of value for understanding the mechanical behavior of SWCNT with divacancy, and the 5-8-5 defect that may be considered as a filler of high loading composites.
|
Received: 05 August 2014
Revised: 25 November 2014
Accepted manuscript online:
|
PACS:
|
64.70.Nd
|
(Structural transitions in nanoscale materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11374372), Natural Science Foundation of Shandong Province, China (Grant No. ZR2014EMQ006), the Postdoctoral Science Foundation of China (Grant No. 2014M551983), the Postdoctoral Applied Research Foundation of Qingdao City, China (Grant No. 2014), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 12CX04087A and 14CX02018A), and the Qingdao Science and Technology Program, China (Grant No. 14-2-4-27-jch). |
Corresponding Authors:
Ling Cui-Cui
E-mail: lingcuicui@upc.edu.cn
|
Cite this article:
Zhang Ya-Ping (张亚萍), Ling Cui-Cui (凌翠翠), Li Gui-Xia (李桂霞), Zhu Hai-Feng (朱海丰), Zhang Meng-Yu (张梦禹) Radial collapse and physical mechanism of carbon nanotube with divacancy and 5-8-5 defects 2015 Chin. Phys. B 24 046401
|
[1] |
Poncharal P, Wang Z L, Ugarte D and De Heer W A 1999 Science 283 1513
|
[2] |
Chaudhary K T, Ali J and Yupapin P P 2014 Chin. Phys. B 23 035203
|
[3] |
Yu M F, Lourie O, Dyer M J, Moloni K, Kelly T F and Ruoff R S 2000 Science 287 637
|
[4] |
Long Y Z, Li M M, Sui W M, Kong Q S and Zhang L 2009 Chin. Phys. B 18 1221
|
[5] |
Zhang M, Atkinson K R and Baughman R H 2004 Science 306 1358
|
[6] |
Suggs K and Wang X Q 2010 Nanoscale 2 385
|
[7] |
Laachachi A, Vivet A, Nouet G, Doudou B B, Poilane C, Chen J, Bo Bai J and Ayachi M 2008 Mater. Lett. 62 394
|
[8] |
Vivet A, Doudou B B, Poilane C, Chen J and Ayachi M J 2011 J. Mater. Sci. 46 1322
|
[9] |
Terrones M, Banhart F, Grobert N, Charlier J C, Terrones H and Ajayan P 2002 Phys. Rev. Lett. 89 075505
|
[10] |
Andrews R, Jacques D, Qian D and Dickey E C 2001 Carbon 39 1681
|
[11] |
Mawhinney D B, Naumenko V, Kuznetsova A, Yates J T Jr, Liu J and Smalley R E 2000 Chem. Phys. Lett. 324 213
|
[12] |
Chandra N, Namilae S and Shet C 2004 Phys. Rev. B 69 094101
|
[13] |
Miyamoto Y, Rubio A, Berber S, Yoon M and Tomanek D 2004 Phys. Rev. B 69 121413R
|
[14] |
Huang X, Yuan H Y, Hsia K J and Zhang S 2010 Nano Res. 3 32
|
[15] |
Mielke S L, Troya D, Zhang S, Li J L, Xiao S, Car R, Ruoff R S, Schatz G C and Belytschko T 2004 Chem. Phys. Lett. 390 413
|
[16] |
Lu Q and Bhattacharya B 2005 Nanotechnology 16 555
|
[17] |
Feng D L, Feng Y H, Chen Y, Li W and Zhang X X 2013 Chin. Phys. B 22 016501
|
[18] |
Xiao J R, Staniszewski J and Gillespie J W Jr 2009 Compos. Struct. 88 602
|
[19] |
Hu Y, Jang I and Sinnott S B 2003 Compos. Sci. Technol. 63 1663
|
[20] |
Cooper C A, Cohen S R, Barber A H and Wagner H D 2002 Appl. Phys. Lett. 81 3873
|
[21] |
Mikó C, Milas M, Seo J W, Couteau E, Barisiæ N, Gaál R and Forró L 2003 Appl. Phys. Lett. 83 4622
|
[22] |
Stahl H, Appenzeller J, Martel R, Avouris P and Lengeler B 2000 Phys. Rev. Lett. 85 5186
|
[23] |
Salonen E, Krasheninnikov A V and Nordlund K 2002 Nucl. Instrum. Methods Phys. Res. Sect. B 193 603
|
[24] |
Kis A, Csányi G, Salvetat J P, Lee T N, Couteau E, Kulik A J, Benoit W, Brugger J and Forró L 2004 Nat. Mater. 3 153
|
[25] |
Huhtala M, Krasheninnikov A V, Aittoniemi J, Nordlund K and Kaski K 2004 Phys. Rev. B 70 045404
|
[26] |
Terrones M, Terrones H, Banhart F, Charlier J C and Ajayan P M 2000 Science 288 1226
|
[27] |
Ling C C, Xue Q Z, Jing N N and Xia D 2012 Nanoscale 4 3894
|
[28] |
Yan K Y, Xue Q Z, Zheng Q B, Xia D, Chen H J and Xie J 2009 J. Phys. Chem. C 113 3120.
|
[29] |
Zheng Q B, Geng Y, Wang S J, Li Z G and Kim J K 2010 Carbon 48 4315
|
[30] |
Ling C C, Xue Q Z, Jing N N and Xia D 2012 RSC Adv. 2 7549
|
[31] |
Ling C C, Xue Q Z, Chu L Y, Jing N N and Zhou X Y 2012 RSC Adv. 2 12182
|
[32] |
Ling C C, Xue Q Z, Xia D, Shan M X and Han Z D 2014 RSC Adv. 4 1107
|
[33] |
Krasheninnikov A V, Nordlund K, Sirviö M, Salonen E and Keinonen J 2001 Phys. Rev. B 63 245405
|
[34] |
Ajayan P M, Ravikumar V and Charlier J C 1998 Phys. Rev. Lett. 81 1437
|
[35] |
Krasheninnikov A V and Nordlund K 2002 J. Vac. Sci. Technol. B 20 728
|
[36] |
Krasheninnikov A V, Nordlund K, and Keinonen J 2002 Phys. Rev. B 65 165423
|
[37] |
Yan K Y, Xue Q Z, Xia D, Chen H J, Xie J and Dong M D 2009 ACS Nano 3 2235
|
[38] |
Xie J, Xue Q Z, Chen H J, Xia D, Lv C and Ma M 2010 J. Phys. Chem. C 114 2100
|
[39] |
Sun H, Ren P and Fried J R 1998 Comput. Theor. Poly. Sci. 8 229
|
[40] |
Sun H 1998 J. Phys. Chem. B 102 7338
|
[41] |
Wang Q, Duan W H, Liew K M and He X Q 2007 Phys. Lett. A 367 135
|
[42] |
Wang Q 2009 Nano Lett. 9 245
|
[43] |
Al-Haik M, Hussaini M Y and Garmestani H 2005 J. Appl. Phys. 97 074306
|
[44] |
Fan Y, Goldsmith B R and Collins P G 2005 Nat. Mater. 4 906
|
[45] |
Sammalkorpi M, Krasheninnikov A, Kuronen A, Nordlund K and Kaski K 2004 Phys. Rev. B 70 245416
|
[46] |
Banhart F, Kotakoski J and Krasheninnikov A V 2011 ACS Nano 5 26
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|