Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 034201    DOI: 10.1088/1674-1056/24/3/034201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Drift effect on vacuum birefringence in a strong electric and magnetic field

Huang Yong-Sheng (黄永盛), Wang Nai-Yan (王乃彦), Tang Xiu-Zhang (汤秀章)
High Power KrF Excimer Laser Laboratory, China Institute of Atomic Energy, Beijing 102413, China
Abstract  

As an important QED effect to detect the vacuum polarization, birefringence in the presence of a strong electric and magnetic field, E0B0,E0cB0, is considered. The directional dependence of birefringence is obtained. In two special cases: E0 = 0 and E0 = cB0, our results are consistent with the previous ones. The refractive index of the probe wave propagating in the E0×B0 direction decreases with E0/cB0, while that in the -E0×B0 direction increases with E0/cB0. The physics of the direction dependence of birefringence maybe the E0×B0 drift velocity of the virtual electrons and positrons.

Keywords:  vacuum birefringence      critical Schwinger field      refractive index      E×      B drift  
Received:  27 August 2014      Revised:  30 January 2015      Accepted manuscript online: 
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.50.&ndash  
  p  
  03.70.+k (Theory of quantized fields)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2011CB808104) and the National Natural Science Foundation of China (Grant No. 11105233).

Corresponding Authors:  Huang Yong-Sheng     E-mail:  huangyongs@gmail.com

Cite this article: 

Huang Yong-Sheng (黄永盛), Wang Nai-Yan (王乃彦), Tang Xiu-Zhang (汤秀章) Drift effect on vacuum birefringence in a strong electric and magnetic field 2015 Chin. Phys. B 24 034201

[1] Abdukerim N, Li Z L and Xie B S 2013 Phys. Lett. B 726 820
[2] Tang S, Xie B S, Lu D, Wang H Y, Fu L B and Liu J 2013 Phys. Rev. A 88 012106
[3] Su Q, Su W, Lü Z Q, Jiang M, Lu X, Sheng Z M and Grobe R 2012 Phys. Rev. Lett. 109 253202
[4] Xie B S, Mohamedsedik M and Dulat S 2012 Chin. Phys. Lett. 29 021102
[5] Heisenberg W and Euler H 1936 Z. Physik 98 714
[6] Bialynicka-Birula Z and Bialynicki-Birula I 1970 Phys. Rev. D 2 2341
[7] Boillat G 1970 J. Math. Phys. 11 941
[8] Adler S L and Schubert C 1996 Phys. Rev. Lett. 77 1695
[9] Zavattini E, Zavattini G, Ruoso G, Polacco E, Milotti E, Karuza M, Gastaldi U, Di Domenico G, Della Valle F, Cimino R, Carusotto S, Cantatore G and Bregant M 2006 Phys. Rev. Lett. 96 110406
[10] Adler S L 2007 J. Phys. A: Math. Theor. 40 F143
[11] Heyl J S and Hernquist L 1997 J. Phys. A: Math. Gen. 30 6485
[12] Biswas S and Melnikov K 2007 Phys. Rev. D 75 053003
[13] Zavattini E, Zavattini G, Ruoso G, Polacco E, Milotti E, Karuza M, Gastaldi U, Di Domenico G, Della Valle F, Cimino R, Carusotto S, Cantatore G and Bregant M 2007 Nucl. Phys. B Proc. Suppl. 164 264
[14] Della Valle F, Gastaldi U, Messineo G, Milotti E, Pengo R, Piemontese L, Ruoso G and Zavattini G 2013 New J. Phys. 15 053026
[15] Kryuchkyan G Y and Hatsagortsyan K Z 2011 Phys. Rev. Lett. 107 053604
[16] Narozhnyi N B 1969 JETP 28 371
[17] Baier R and Breitenlohner P 1967 Acta Phys. Austriaca 25 212
[18] Baier R and Breitenlohner P 1967 Nuovo Cim. B 47 117
[19] Heinzl T, Liesfeld B, Amthorb K U, Schwoererb H, Sauerbreyc R and Wipfd A 2006 Opt. Commun. 267 318
[20] Brezin E and Itzykson C 1971 Phys. Rev. D 3 618
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[3] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[4] Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
Xiangxian Wang(王向贤), Jian Zhang(张健), Jiankai Zhu(朱剑凯), Zao Yi(易早), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(2): 024210.
[5] High-sensitivity refractive index sensors based on Fano resonance in a metal-insulator-metal based arc-shaped resonator coupled with a rectangular stub
Shubin Yan(闫树斌), Hao Su(苏浩), Xiaoyu Zhang(张晓宇), Yi Zhang(张怡), Zhanbo Chen(陈展博), Xiushan Wu(吴秀山), and Ertian Hua(华尔天). Chin. Phys. B, 2022, 31(10): 108103.
[6] On the structural and optical properties investigation of annealed Zn nanorods in the oxygen flux
Fatemeh Abdi. Chin. Phys. B, 2021, 30(11): 117802.
[7] Novel high-quality Fano resonance based on metal-insulator-metal waveguide with L-shaped resonators
Changsong Wu(伍长松) and Jun Zhu(朱君). Chin. Phys. B, 2021, 30(10): 104210.
[8] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[9] Refractive index of ionic liquids under electric field: Methyl propyl imidazole iodide and several derivatives
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2020, 29(4): 047801.
[10] Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Xiaoxiong Wu(吴枭雄), Yingwen Su(苏盈文), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), and Hua Yang(杨华)$. Chin. Phys. B, 2020, 29(11): 114204.
[11] Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media
Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷)†, and Yidong Hou(侯宜栋)‡. Chin. Phys. B, 2020, 29(10): 107303.
[12] Dynamical anisotropic magnetoelectric effects at ferroelectric/ferromagnetic insulator interfaces
Yaojin Li(李耀进), Vladimir Koval, Chenglong Jia(贾成龙). Chin. Phys. B, 2019, 28(9): 097501.
[13] A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer
Xiangxian Wang(王向贤), Jiankai Zhu(朱剑凯), Huan Tong(童欢), Xudong Yang(杨旭东), Xiaoxiong Wu(吴枭雄), Zhiyuan Pang(庞志远), Hua Yang(杨华), Yunping Qi(祁云平). Chin. Phys. B, 2019, 28(4): 044201.
[14] Analysis of optical properties of bio-smoke materials in the 0.25-14 μm band
Xinying Zhao(赵欣颖), Yihua Hu(胡以华), Youlin Gu(顾有林), Xi Chen(陈曦), Xinyu Wang(王新宇), Peng Wang(王鹏), Xiao Dong(董骁). Chin. Phys. B, 2019, 28(3): 034201.
[15] Damage and recovery of fiber Bragg grating under radiation environment
Shi-Zhe Wen(温世喆), Wei-Chen Xiong(熊伟晨), Li-Ping Huang(黄力平), Zhen-Rui Wang(王镇锐), Xing-Bin Zhang(张兴斌), Zhen-Hui He(何振辉). Chin. Phys. B, 2018, 27(9): 090701.
No Suggested Reading articles found!