Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 033601    DOI: 10.1088/1674-1056/24/3/033601
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Morphology and structural stability of Pt-Pd bimetallic nanoparticles

Liu Tun-Dong (刘暾东)a, Zheng Ji-Wen (郑骥文)a, Shao Gui-Fang (邵桂芳)a, Fan Tian-E (范天娥)a, Wen Yu-Hua (文玉华)b
a Center for Cloud Computing and Big Data, Department of Automation, Xiamen University, Xiamen 361005, China;
b Institute of Theoretical Physics and Astrophysics, Department of Physics, Xiamen University, Xiamen 361005, China
Abstract  

The morphologies and structures of Pt-Pd bimetallic nanoparticles determine their chemical and physical properties. Therefore, a fundamental understanding of their morphologies and structural stabilities is of crucial importance to their applications. In this article, we have performed Monte Carlo simulations to systematically explore the structural stability and structural features of Pt-Pd alloy nanoparticles. Different Pt/Pd ratios, and particle sizes and shapes were considered. The simulated results reveal that the truncated octahedron, which has the remarkably lowest energy among all the considered shapes, exhibits the best structural stability while the tetrahedron has the worst invariably. Furthermore, all the structures of Pt-Pd alloy nanoparticles present Pd-rich in the outmost layer but Pt-rich in the sub-outmost layer. Especially, atomic distribution and chemical short-range order parameter were applied to further characterize the structural features of Pt-Pd alloy nanoparticles. This study provides a significant insight not only into the structural stability of Pt-Pd alloy nanoparticles with different compositions, and particle sizes and shapes but also to the design of bimetallic nanoparticles.

Keywords:  nanoparticles      structural stability      Monte Carlo simulation  
Received:  16 July 2014      Revised:  29 October 2014      Accepted manuscript online: 
PACS:  36.40.-c (Atomic and molecular clusters)  
  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
  52.65.Pp (Monte Carlo methods)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 51271156) and the Natural Science Foundation of Fujian Province, China (Grant Nos. 2013J01255 and 2013J06002).

Corresponding Authors:  Shao Gui-Fang     E-mail:  gfshao@xmu.edu.cn

Cite this article: 

Liu Tun-Dong (刘暾东), Zheng Ji-Wen (郑骥文), Shao Gui-Fang (邵桂芳), Fan Tian-E (范天娥), Wen Yu-Hua (文玉华) Morphology and structural stability of Pt-Pd bimetallic nanoparticles 2015 Chin. Phys. B 24 033601

[1] Broyer M, Cottancin E, Lerme J, Pellarin M, Fatti N D, Vallee F, Burgin J, Guillon C and Langot P 2008 Faraday Discuss. 138 137
[2] Link S, Burda C, Wang Z L and El-Sayed M A 1999 J. Chem. Phys. 111 1255
[3] Yen C W, Lin M L, Wang A Q, Chen S A, Chen J M and Mou C Y 2009 J. Phys. Chem. C 113 17831
[4] Wang D S and Li Y D 2011 Adv. Mater. 23 1044
[5] Yang X Q, Hu Y, Zhang J L, Wang Y Q, Pei C M and Liu F 2014 Acta Phys. Sin. 63 048102 (in Chinese)
[6] Baletto F and Ferrando R 2005 Rev. Mod. Phys. 77 371
[7] Xie Z, Ma Q M, Liu Y and Li Y C 2008 Chin. Phys. Lett. 25 1270
[8] Li Y, Qi W H, Huang B Y, Ji W H and Wang M P 2013 J. Phys. Chem. C 117 15394
[9] Wilson N T, Bailey M S and Johnston R L 2006 Inorg. Chim. Acta 359 3649
[10] Oh J S, Nam H S, Choi J H and Lee S C 2013 J. Phys.: Conf. Ser. 410 012084
[11] He C, Desai S, Brown G and Bollepalli S 2005 Electrochem. Soc. Interface 14 41
[12] Deng L, Hu W Y, Deng H Q, Xiao S F and Tang J F 2011 J. Phys. Chem. C 115 11355
[13] Jeong G H, Kim M, Lee Y W, Choi W, Oh W C, Park Q H and Han S W 2009 J. Am. Chem. Soc. 131 1672
[14] Ojea-Jimenez I, Romero F M, Bastus F M and Puntes V 2010 J. Phys. Chem. C 114 1800
[15] Wu J B, Zhou M J, Wang X M, Wang Y Y, Xiong Z W, Cheng X L, Casanove M J, Gatel C and Wu W D 2014 Acta Phys. Sin. 63 166801 (in Chinese)
[16] Ding Y, Fan F, Tian Z and Wang Z L 2010 J. Am. Chem. Soc. 132 12480
[17] Esparza R, García-Ruiz A F, Salazar J J V, Perez R and Jose-Yacaman M 2013 J. Nanopart. Res. 15 1342
[18] Huang R, Wen Y H, Zhu Z Z and Sun S G 2012 J. Phys. Chem. C 116 8664
[19] Yuan Q, Zhou Z Y, Zhuang J and Wang X 2010 Chem. Commun. 46 1491
[20] Yin A X, Min X Q, Zhang Y W and Yan C H 2011 J. Am. Chem. Soc. 133 3816
[21] Lee Y W, Ko A R, Han S B, Kim H S and Park K W 2011 Phys. Chem. Chem. Phys. 13 5569
[22] Cagin T, Kimura Y and Qi Y 1999 Mater. Res. Soc. Symp. Proc. 554 43
[23] Yun K, Cho Y H, Cha P R, Lee J, Nam H S, Oh J S, Choi J H and Lee S C 2012 Acta Mater. 60 4908
[24] Wei L Y, Qi W H, Huang B Y and Wang M P 2013 Comp. Mater. Sci. 69 374
[25] Ferrando R, Jellinek J and Johnston R L 2008 Chem. Rev. 108 845
[26] Wang L L and Johnson D D 2009 J. Am. Chem. Soc. 131 14023
[27] Sun Y, Wiley B, Li Z Y and Xia Y 2004 J. Am. Chem. Soc. 126 9399
[28] Wang Z G, Huang R and Wen Y H 2013 Acta Phys. Sin. 62 126101 (in Chinese)
[29] Baletto F, Mottet C and Ferrando R 2003 Phys. Rev. Lett. 90 135504
[30] Cheng D J, Wang W C, Huang S P and Cao D P 2008 J. Phys. Chem. C 112 4855
[31] Huang R, Wen Y H, Zhu Z Z and Sun S G 2011 J. Mater. Chem. 21 11578
[32] Wen Y H, Huang R, Li C, Zhu Z Z and Sun S G 2012 J. Mater. Chem. 22 7380
[33] Huang R, Wen Y H, Shao G F and Sun S G 2013 J. Phys. Chem. C 117 4278
[34] Qin L J, Zhang Y H, Huang S P, Tian H P and Wang P 2010 Phys. Rev. B 82 075413
[35] Frenkel D and Smit B 1997 Phys. Today 50 66
[36] Zhong K H, Huang Z G, Feng Q Jiang L Q, Yang Y M and Chen Z G 2006 Chin. Phys. Lett. 23 200
[37] Lu Z W, Wei S H and Zunger A 1991 Phys. Rev. Lett. 66 1753
[38] Jiang L, Tang Y X, Liow C H, Wu J S, Sun Y H, Jiang Y Y, Dong Z L, Li S Z, Dravid V P and Chen X D 2013 Small 9 705
[39] Barnard A S 2012 Acc. Chem. Res. 45 1688
[40] Deng L, Deng H Q, Xiao S F, Tang J F and Hu W Y 2013 Faraday Discuss. 162 293
[41] Montejano-Carrixales J M, Aguilera-Granja F and Moran-Lopez J L 1997 Nanostruct. Mater. 8 269
[42] Cowley J M 1950 Phys. Rev. 77 669
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[3] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[4] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[5] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[6] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[7] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[8] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[9] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[10] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[11] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[12] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[13] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[14] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[15] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
No Suggested Reading articles found!