Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 028101    DOI: 10.1088/1674-1056/24/2/028101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition

Wang Jun (王俊), Hu Hai-Yang (胡海洋), Deng Can (邓灿), He Yun-Rui (贺云瑞), Wang Qi (王琦), Duan Xiao-Feng (段晓峰), Huang Yong-Qing (黄永清), Ren Xiao-Min (任晓敏)
Institute of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), State Key Laboratory of Information Photonics and Optical Communications (BUPT), Beijing 100876, China
Abstract  The growth of GaAs epilayers on silicon substrates with multiple layers of InAs quantum dots (QDs) as dislocation filters by metalorganic chemical vapor deposition (MOCVD) is investigated in detail. The growth conditions of single and multiple layers of QDs used as dislocation filters in GaAs/Si epilayers are optimized. It is found that the insertion of a five-layer InAs QDs into the GaAs buffer layer effectively reduces the dislocation density of GaAs/Si film. Compared with the dislocation density of 5×107 cm-2 in the GaAs/Si sample without QDs, a density of 2×106 cm-2 is achieved in the sample with QD dislocation filters.
Keywords:  GaAs-on-Si growth      dislocation filter      quantum dot  
Received:  04 August 2014      Revised:  11 September 2014      Accepted manuscript online: 
PACS:  81.05.Ea (III-V semiconductors)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  81.07.Ta (Quantum dots)  
  61.72.Lk (Linear defects: dislocations, disclinations)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2013RC1205) and the National Basic Research Program of China (Grant No. 2010CB327601).
Corresponding Authors:  Wang Jun     E-mail:  wangjun12@bupt.edu.cn

Cite this article: 

Wang Jun (王俊), Hu Hai-Yang (胡海洋), Deng Can (邓灿), He Yun-Rui (贺云瑞), Wang Qi (王琦), Duan Xiao-Feng (段晓峰), Huang Yong-Qing (黄永清), Ren Xiao-Min (任晓敏) Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition 2015 Chin. Phys. B 24 028101

[1] Won R 2010 Nat. Photon. 4 498
[2] Jalali B 2006 J. Lightw. Technol. 24 4600
[3] Zhou X J, Tang C W, Li Q and Lau K M 2012 Phys. Stat. Sol. A 209 1380
[4] Shi Y B, Guo H, Ni H Q, Xue C Y, Niu Z C, Tang J, Liu J, Zhang W D, He J F, Li M F and Yu Y 2012 Materials 5 2917
[5] Li J, Guo H, Liu J, Tang J, Ni H Q, Shi Y B, Xue C Y, Niu Z C, Zhang W D, Li M F and Yu Y 2013 Nanoscale Res. Lett. 8 218
[6] Ma K, Urata R, David A M and James S H 2004 IEEE J. Quantum Electron. 40 800
[7] Chen R, Tran T, Ng K, Ko W S, Chuang L, Sedgwick F and Chang C 2011 Nat. Photon. 5 170
[8] Liang D and Bowers J 2010 Nat. Photon. 4 511
[9] Han L S, Zhu H L, Zhang C, Ma L, Liang S and Wang W 2013 Chin. Phys. Lett. 30 108501
[10] Li L, Zhao D G, Jiang D S, Liu Z S, Chen P, Wu L L, Le L C, Wang H and Yang H 2013 Chin. Phys. B 22 068802
[11] Liu H, Wang T, Jiang Q, Hogg R, Tutu F, Pozzi F and Seeds A 2011 Nat. Photon. 5 416
[12] Michel J, Liu J and Kimerling L C 2010 Nat. Photon. 4 527
[13] Bolkhovityanov Y B and Pchelyakov O P 2008 Physics-Uspekhi 51 437
[14] Linder K K, Phillips J, Qasaimeh O, Liu X F, Krishna S and Bhattacharya P 1999 Appl. Phys. Lett. 74 1355
[15] Huang H, Ren X M, Lv J H, Wang Q, Song H L, Cai S W, Huang Y Q and Qu B 2008 J. Appl. Phys. 104 113114
[16] Wang J, Deng C, Jia Z G, Wang Y F, Wang Q, Huang Y Q and Ren X M 2013 Chin. Phys. Lett. 30 116801
[17] Wang Y F, Wang Q, Jia Z G, Li X Y, Deng C, Ren X M, Cai S W and Huang Y Q 2013 J. Vac. Sci. Technol. B 31 051211-5
[18] Lee S C, Dawson L R, Huang S H and Brueck S R J 2011 Cryst. Growth & Design 11 3673
[19] Cheng S F, Gao L, Woo R L, Pangan A, Malouf G, Goorsky M S, Wang K L and Hicks R F 2008 J. Cryst. Growth 310 562
[20] Kataria H, Metaferia W, Junesand C, Zhang C, Julian N, Bowers J and Lourdudoss S 2014 IEEE J. Sel. Top. Quantum Electron. 20 8201407
[21] Kazi Z I, Egawa T, Jimbo T and Umeno M 1999 IEEE Phton. Technol. Lett. 11 1563
[22] Lee S C and Brueck S R J 2009 Appl. Phys. Lett. 94 153110
[23] Huang D, Reshchikov M A, Yun F, King T, Baski A A and Morkoc H 2002 Appl. Phys. Lett. 80 216
[24] Yang J, Bhattacharya P and Wu Z 2007 IEEE Phton. Technol. Lett. 19 747
[25] Yang J, Bhattacharya P and Mi Z 2007 IEEE Trans. Electron. Dev. 54 2849
[26] Li T H, Wang Q, Guo X, Jia Z G, Wang P Y, Ren X M, Huang Y Q and Cai S W 2012 Physica E 44 1146
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[4] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[9] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[10] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[11] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!