CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Temperature effect on the electronic structure of Nb:SrTiO3 (100) surface |
Zhang Shuang-Hong (张双红)a b, Wang Jia-Ou (王嘉鸥)b, Qian Hai-Jie (钱海杰)b, Wu Rui (吴蕊)b, Zhang Nian (张念)b, Lei Tao (雷涛)b, Liu Chen (刘晨)b, Kurash Ibrahim (奎热西·伊布拉欣)b |
a School of Physics and Materials Science, Anhui University, Hefei 230039, China; b Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract The effect of temperature on the electronic structure of Nb-doped SrTiO3 (100) surface is investigated by high-resolution synchrotron radiation photoemission spectroscopy. According to the x-ray photoemission spectroscopy (XPS) results, at an annealing temperature of less than 700 ℃, the adsorbed carbon and hydroxyl on the STO surface could be removed, to expose the fresh intrinsic surface with a constant ratio of Ti/O. It is obvious that the STO would be doped by Ca+ impurities of bulks and O vacancies in the surface after annealing at 920 ℃ for one hour.
|
Received: 09 June 2014
Revised: 30 September 2014
Accepted manuscript online:
|
PACS:
|
79.60.-i
|
(Photoemission and photoelectron spectra)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
81.65.Cf
|
(Surface cleaning, etching, patterning)
|
|
Fund: Project supported by the Funds from the Chinese Academy of Sciences (Grant No. 1G2009312311750101) and the National Natural Science Foundation of China (Grant No. 11375228). |
Corresponding Authors:
Wang Jia-Ou
E-mail: wangjo@ihep.ac.cn
|
Cite this article:
Zhang Shuang-Hong (张双红), Wang Jia-Ou (王嘉鸥), Qian Hai-Jie (钱海杰), Wu Rui (吴蕊), Zhang Nian (张念), Lei Tao (雷涛), Liu Chen (刘晨), Kurash Ibrahim (奎热西·伊布拉欣) Temperature effect on the electronic structure of Nb:SrTiO3 (100) surface 2015 Chin. Phys. B 24 027901
|
[1] |
Habermeier H U 2007 Materials Today 10 34
|
[2] |
Kan D, Terashima T, Kanda R, Masuno A, Tanaka K, Chu S, Kan H, Ishizumi A, Kanemitsu Y, Shimakawa Y and Takano M 2005 Nat. Mater. 4 816
|
[3] |
Konta R, Ishii T, Kato H and Kudo A 2004 J. Phys. Chem. B 108 8992
|
[4] |
Liang Y and Bonnell D A 1993 Surf. Sci. Lett. 285 L510
|
[5] |
Zhou N, Zhao K, Liu H, Lu Z, Zhao H, Tian L, Liu W and Zhao S 2009 J. Appl. Phys. 105 083110
|
[6] |
Tabata H, Murata O, Kawai T and Kawai S 1990 Appl. Phys. Lett. 56 1576
|
[7] |
Bai H L, Liu G L, He S M, Yan S S, Zhu D P, Guo H Y, Ji Z W, Yang F F, Chen Y X and Mei L M 2012 Chin. Phys. B 21 057801
|
[8] |
Xie Y W and Hwang H Y 2013 Chin. Phys. B 22 127301
|
[9] |
Zhang T, Ding L H and Zhang W F 2012 Chin. Phys. B 21 047301
|
[10] |
Bickel N, Schmidt G, Heinz K and Müller K 1989 Phys. Rev. Lett. 62 2009
|
[11] |
Zhao L, Zhang W T, Liu H Y, Meng J Q, Liu G D, Lu W, Dong X L and Zhou X J 2010 Chin. Phys. Lett. 27 87401
|
[12] |
Choi W S, Jeong D W, Seo S S A, Lee Y S, Kim T H, Jang S Y, Lee H N and Myung-Whun K 2011 Phys. Rev. B 83 195113
|
[13] |
Kim S S and Je J H 2001 Ferroelectrics 259 9
|
[14] |
Posadas A, Berg M, Seo H, de Lozanne A, Demkov A A, Smith D J, Kirk A P, Zhernokletov D and Wallace R M 2011 Appl. Phys. Lett. 98 053104
|
[15] |
Kim B M, Brintlinger T, Cobas E, Fuhrer M S, Zheng H, Yu Z, Droopad R, Ramdani J and Eisenbeiser K 2004 Appl. Phys. Lett. 84 1946
|
[16] |
Liang Y, Kulik J, Eschrich T C, Droopad R, Yu Z and Maniar P 2004 Appl. Phys. Lett. 85 1217
|
[17] |
Ohtomo A and Hwang H Y 2006 Nature 441 120
|
[18] |
Aiura Y, Hase I, Bando H, Yasue T, Saitoh T and Dessau D S 2002 Surf. Sci. 515 61
|
[19] |
Jiang Q D and Zegenhagen J 1999 Surf. Sci. 425 343
|
[20] |
Meevasana W, King P D C, He R H, Mo S K, Hashimoto M, Tamai A, Songsiriritthigul P, Baumberger F and Shen Z X 2011 Nat. Mater. 10 114
|
[21] |
Polli A D, Wagner T and Rühle M 1999 Surf. Sci. 429 237
|
[22] |
Santander-Syro A F, Copie O, Kondo T, Fortuna F, Pailhes S, Weht R, Qiu X G, Bertran F, Nicolaou A, Taleb-Ibrahimi A, Le Fevre P, Herranz G, Bibes M, Reyren N, Apertet Y, Lecoeur P, Barthelemy A and Rozenberg M J 2011 Nature 469 189
|
[23] |
Shiraki S, Nantoh M, Katano S and Kawai M 2010 Appl. Phys. Lett. 96 231901
|
[24] |
Azad S, Engelhard M H and Wang L Q 2005 J. Phys. Chem. B 109 10327
|
[25] |
Kawasaki M, Ohtomo A, Arakane T, Takahashi K, Yoshimoto M and Koinuma H 1996 Appl. Surf. Sci. 107 102
|
[26] |
Kawasaki M, Takahashi K, Maeda T, Tsuchiya R, Shinohara M, Ishiyama O, Yonezawa T, Yoshimoto M and Koinuma H 1994 Science 266 1540
|
[27] |
Yamamoto Y, Nakajima K, Ohsawa T, Matsumoto Y and Koinuma H 2005 Jpn. J. Appl. Phys. 44 L511
|
[28] |
Henrich V E, Dresselhaus G and Zeiger H J 1978 Phys. Rev. B 17 4908
|
[29] |
Castell M R 2002 Surf. Sci. 505 1
|
[30] |
Jiang Q D and Zegenhagen J 1995 Surf. Sci. 338 L882
|
[31] |
Zhang Q W, Zhai J W and Yue Z X 2013 Acta Phys. Sin. 62 237702 (in Chinese)
|
[32] |
Adachi Y, Kohiki S, Wagatsuma K and Oku M 1999 Appl. Surf. Sci. 143 272
|
[33] |
Hanzig J, Abendroth B, Hanzig F, Stöcker H, Strohmeyer R, Meyer D C, Lindner S, Grobosch M, Knupfer M, Himcinschi C, Muühle U and Munnik F 2011 J. Appl. Phys. 110 064107
|
[34] |
Schafranek R, Payan S, Maglione M and Klein A 2008 Phys. Rev. B 77 195310
|
[35] |
Deak D S 2007 Mater. Sci. Technol. 23 127
|
[36] |
Morikawa K, Mizokawa T, Fujimori A, Taguchi Y and Tokura Y 1996 Phys. Rev. B 54 8446
|
[37] |
Marshall M S J, Newell D T, Payne D J, Egdell R G and Castell M R 2011 Phys. Rev. B 83 035410
|
[38] |
Brown G E, Kendelewicz T, Carrier X and Doyle C S 1999 Surf. Rev. Lett. 06 1247
|
[39] |
Tseng S H, Palathinkal T J and Tai N H 2010 Carbon 48 2159
|
[40] |
Kobayashi D, Kumigashira H, Oshima M, Ohnishi T, Lippmaa M, Ono K, Kawasaki M and Koinuma H 2004 J. Appl. Phys. 96 7183
|
[41] |
Kim J, Chung J and Oh S J 2005 Phys. Rev. B 71 121406
|
[42] |
Argirusis C, Voigts F, Datta P, Grosse-Brauckmann J and Maus-Friedrichs W 2009 Phys. Chem. Chem. Phys. 11 3152
|
[43] |
Andersen J E T and Moller P J 1990 Appl. Phys. Lett. 56 1847
|
[44] |
Herger R, Willmott P R, Bunk O, Schlepütz C M, Patterson B D, Delley B, Shneerson V L, Lyman P F and Saldin D K 2007 Phys. Rev. B 76 195435
|
[45] |
Rao C N R and Sarma D D 1982 J. Solid State Chem. 45 14
|
[46] |
Cai H L, Wu X S and Gao J 2009 Chem. Phys. Lett. 467 313
|
[47] |
Nagarkar P V, Searson P C and Gealy F D 1991 J. Appl. Phys. 69 459
|
[48] |
Martín González M S, Aguirre M H, Morán E, Alario-Franco M Á, Perez-Dieste V, Avila J and Asensio M C 2000 Solid State Sci. 2 519
|
[49] |
Nishimura T, Ikeda A, Namba H, Morishita T and Kido Y 1999 Surf. Sci. 421 273
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|