Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 017505    DOI: 10.1088/1674-1056/24/1/017505
Special Issue: TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
TOPICAL REVIEW—Magnetism, magnetic materials, and interdisciplinary research Prev   Next  

MnFe(PGe) compounds: Preparation, structural evolution, and magnetocaloric effects

Yue Ming (岳明)a, Zhang Hong-Guo (张红国)a, Liu Dan-Min (刘丹敏)b, Zhang Jiu-Xing (张久兴)a
a College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China;
b Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
Abstract  

The interdependences of preparation conditions, magnetic and crystal structures, and magnetocaloric effects (MCE) of the MnFePGe-based compounds are reviewed. Based upon those findings, a new method for the evaluation of the MCE in these compounds, based on differential scanning calorimetry (DSC), is proposed. The MnFePGe-based compounds are a group of magnetic refrigerants with giant magnetocaloric effect (GMCE), and as such, have drawn tremendous attention, especially due to their many advantages for practical applications. Structural evolution and phase transformation in the compounds as functions of temperature, pressure, and magnetic field are reported. Influences of preparation conditions upon the homogeneity of the compounds' chemical composition and microstructure, both of which play a key role in the MCE and thermal hysteresis of the compounds, are introduced. Lastly, the origin of the “virgin effect” in the MnFePGebased compounds is discussed.

Keywords:  MnFePGe-based compounds      magnetocaloric effect      structural evolution      thermal hysteresis      virgin effect  
Received:  06 November 2014      Revised:  09 December 2014      Accepted manuscript online: 
PACS:  75.20.En (Metals and alloys)  
  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.50.Gg (Ferrimagnetics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51171003, 51071007, and 51401002).

Corresponding Authors:  Yue Ming     E-mail:  yueming@bjut.edu.cn

Cite this article: 

Yue Ming (岳明), Zhang Hong-Guo (张红国), Liu Dan-Min (刘丹敏), Zhang Jiu-Xing (张久兴) MnFe(PGe) compounds: Preparation, structural evolution, and magnetocaloric effects 2015 Chin. Phys. B 24 017505

[1] Warburg E 1881 Ann. Phys. 13 141
[2] Giauque W F and MacDougall D P 1933 Phys. Rev. 43 768
[3] Brown G V 1976 J. Appl. Phys. 47 3673
[4] Guo Z B, Du Y W, Zhu J S, Huang H, Ding W P and Feng D 1997 Phys. Rev. Lett. 78 1142
[5] Shen B G, Sun J R, Hu F X, Zhang H W and Cheng Z H 2009 Adv. Mater. 21 4545
[6] Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H and Zhang X X 2001 Appl. Phys. Lett. 78 3675
[7] Fujieda S, Fujita A and Fukamichi K 2002 Appl. Phys. Lett. 81 1276
[8] Wada H and Tanabe Y 2001 Appl. Phys. Lett. 79 3302
[9] Tegus O, Bruck E, Buschow K H J and de Boer F R 2002 Nature 415 150
[10] Trung N T, Ou Z Q, Gortenmulder T J, Tegus O, Buschow K H J and Brück E 2009 Appl. Phys. Lett. 94 102513
[11] Tegus O, Fuquan B, Dagula W, Zhang L, Brück E, Si P Z, de Boer F R and Buschow K H J 2005 J. Alloy. Compound. 396 6
[12] Ou Z Q, Wang G F, Lin S, Tegus O, Brück E and Buschow K H J 2006 J. Phys.: Conden. Matter 18 11577
[13] Cam Thanh D T, Brück E, Tegus O, Klaasse J C P and Buschow K H J 2007 J. Magn. Magn. Mater. 310 e1012
[14] Cam Thanh D T, Brück E, Tegus O, Klaasse J C P, Gortenmulder T J and Buschow K H J 2006 J. Appl. Phys. 99 08Q107
[15] Yan A, Müller K H, Schultz L and Gutfleisch O 2006 J. Appl. Phys. 99 08K903
[16] Tamari N, Tanaka T, Tanaka K, Kondoh I, Kawahara M and Tokita M 1995 J. Ceram. Soc. 103 740
[17] Yue M, Li Z Q, Wang X L, Liu D M, Zhang J X and Liu X B 2009 J. Appl. Phys. 105 07A915
[18] Yue M, Li Z Q, Liu X B, Xu H, Liu D M and Zhang J X 2010 J. Alloy. Compound. 493 22
[19] Liu D M, Yue M, Zhang J X, McQueen T M, Lynn J W, Wang X L, Chen Y, Li J Y, Cava R J, Liu X B, Altounian Z and Huang Q 2009 Phys. Rev. B 79 014435
[20] Yue M, Li Z Q, Xu H, Huang Q Z, Liu X B, Liu D M and Zhang J X 2010 J. Appl. Phys. 107 09A939
[21] Liu D M, Huang Q Z, Yue M, Lynn J W, Liu L J, Chen Y, Wu Z H and Zhang J X 2009 Phys. Rev. B 80 174415
[22] Bacmann M, Soubeyroux J L, Barrett R, Fruchart D, Zach R, Niziol S and Fruchart R 1994 J. Magn. Magn. Mater. 134 59
[23] Yue M, Xu H, Zhao J L, Xu M F, Liu D M and Zhang J X 2013 J. Magn. Magn. Mater. 335 114
[24] Pecharsky V K and Gschneidner K A 1999 J. Appl. Phys. 86 565
[25] Giguère A, Foldeaki M, Ravi Gopal B, Chahine R, Bose T K, Frydman A and Barclay J A 1999 Phys. Rev. Lett. 83 2262
[26] Sun J R, Hu F X and Shen B G 2000 Phys. Rev. Lett. 85 4191
[27] Liu G J, Sun J R, Shen J, Gao B, Zhang H W, Hu F X and Shen B G 2007 Appl. Phys. Lett. 90 032507
[28] de Oliveira N A and von Ranke P J 2008 Phys. Rev. B 77 214439
[29] Yue M, Liu D M, Huang Q Z, Wang T, Hu F X, Li J B, Rao G H, Shen B G, Lynn J W and Zhang J X 2013 J. Appl. Phys. 113 043925
[30] Liu X B, Altounian Z, Ryan D H, Yue M, Li Z Q, Liu D M and Zhang J X 2009 J. Appl. Phys. 105 07A920
[31] Zhang L, Može O, Prokeš K, Tegus O and Brück E 2005 J. Magn. Magn. Mater. 290 679
[32] Cui W B, Lv X K, Yang F, Yu Y, Skomski R, Zhao X G, Liu W and Zhang Z D 2010 J. Appl. Phys. 107 09A938
[33] Liu X B, Altounian Z, Ryan D H, Cranswick M D, Yue M, Li Z Q, Liu D M and Zhang J X (to be published)
[1] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[2] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[3] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[4] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[5] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[6] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[7] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[8] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[9] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[10] Effect of tellurium (Te4+) irradiation on microstructure and associated irradiation-induced hardening
Hefei Huang(黄鹤飞), Jizhao Liu(刘继召), Guanhong Lei(雷冠虹), Ondrej Muránsky, Tao Wei, and Mihail Ionescu. Chin. Phys. B, 2021, 30(5): 056108.
[11] Effects of heat transfer in a growing particle layer on microstructural evolution during solidification of colloidal suspensions
Jia-Xue You(游家学), Yun-Han Zhang(张运涵), Zhi-Jun Wang(王志军), Jin-Cheng Wang(王锦程), and Sheng-Zhong Liu(刘生忠). Chin. Phys. B, 2021, 30(2): 028103.
[12] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[13] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[14] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[15] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
No Suggested Reading articles found!