Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 128501    DOI: 10.1088/1674-1056/23/12/128501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

An analytical model for the vertical electric field distribution and optimization of high voltage REBULF LDMOS

Hu Xia-Rong (胡夏融)a, Lü Rui (吕瑞)b
a School of Physics and Chemistry, Xihua University, Chengdu 610039, China;
b School of Mathematics and Computer Engineering, Xihua University, Chengdu 610039, China
Abstract  In this paper, an analytical model for the vertical electric field distribution and optimization of a high voltage-reduced bulk field (REBULF) lateral double-diffused metal–oxide-semiconductor (LDMOS) transistor is presented. The dependences of the breakdown voltage on the buried n-layer depth, thickness, and doping concentration are discussed in detail. The REBULF criterion and the optimal vertical electric field distribution condition are derived on the basis of the optimization of the electric field distribution. The breakdown voltage of the REBULF LDMOS transistor is always higher than that of a single reduced surface field (RESURF) LDMOS transistor, and both analytical and numerical results show that it is better to make a thick n-layer buried deep into the p-substrate.
Keywords:  REBULF      LDMOS      vertical electric field      breakdown voltage  
Received:  20 May 2014      Revised:  28 June 2014      Accepted manuscript online: 
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the Scientific Research Fund of Education Department of Sichuan Province, China (Grant No. 14ZB0132) and the Key Project of Xihua University, China (Grant No. z1323318).
Corresponding Authors:  Hu Xia-Rong     E-mail:  h1_x2_r3@126.com

Cite this article: 

Hu Xia-Rong (胡夏融), Lü Rui (吕瑞) An analytical model for the vertical electric field distribution and optimization of high voltage REBULF LDMOS 2014 Chin. Phys. B 23 128501

[1]Nakagawa A, Yasuhara N and Baba Y 1991 IEEE Trans. Electron. Dev. 38 1650
[2]Hossain Z, Imam M, Fulton J and Tanaka M 2002 Proceedings of the 14th International Symposium on Power Semiconductor Devices and ICs, June 7-9, 2002, Sante Fe, NM, USA, p. 137
[3]Luo X R, Lei T F, Wang Y G, Gao H M, Fang J, Qiao M, Zhang W, Deng H, Zhang B, Li Z J, Xiao Z Q, Chen Z C and Xu J 2009 IEEE Trans. Electron. Dev. 30 1093
[4]Fujishima N, Sugi A, Kajiwara S, Matsubara K, Nagayasu Y and Andre C 2002 IEEE Trans. Electron. Dev. 49 1462
[5]Fan J, Wang Z G, Zhang B and Luo X R 2013 Chin. Phys. B 22 048501
[6]Duan B X, Zhang B and Li Z J 2006 International Conference on Communications, Circuits and Systems, June 25-28, 2006, GUET, Guilin, China, p. 2709
[7]Zhang B, Duan B X and Li Z J 2006 J. Semicond. 27 730
[8]Duan B X, Yang Y T and Zhang B 2010 Solid-State Electron. 54 685
[9]Cheng J B, Zhang B and Li Z J 2008 IEEE Electron. Dev. Lett. 29 645
[10]Cheng J B, Zhang B and Li Z J 2008 International Conference on Communications, Circuits and Systems, May 25-27, 2008, Xiamen, China, p. 1270
[11]Zhang B, Cheng J B, Qiao M and Li Z J 2008 International Conference on Solid-State and Integrated-Circuit Technology, October 20-23, 2008, Beijing, China, p. 164
[12]Duan B X, Zhang B and Li Z J 2007 Chin. Phys. 16 3754
[13]Cheng J B, Zhang B and Li Z J 2008 Electron. Lett. 44 933
[14]Qiao M, Zhang B, Li Z J and Fang J 2007 Electron. Lett. 43 1231
[15]Zhang B, Cheng J B, Hu S D, Luo X R, Qiao M, Duan B X and Li Z J 2008 International Conference on Electron Devices and Solid-State Circuits, December 8-10, 2008, Renaissance Kowloon Hotel, Hong Kong, China, p. 1
[16]Guo Y F, Li Z J and Zhang B 2006 Microelectron. J. 37 861
[17]Hu X R, Zhang B, Luo X R, Wang Y G, Lei T F and Li Z J 2012 Chin. Phys. B 21 078502
[18]Han S Y, Kim H W and Chung S K 2000 Microelectron. J. 31 685
[19]Sun W F and Shi L X 2004 Microelectron. J. 48 799
[20]Hua T T, Guo Y F, Yu Y, Gene Sheu, Jian T and Yao J F 2013 Chin. Phys. B 22 058501
[21]Hu X R, Zhang B, Luo X R and Li Z J 2012 Solid-State Electron. 69 89
[22]He J and Zhang X 2001 Microelectron. J. 32 655
[23]Li Q, Li Z J and Zhang B 2006 J. Semicond. 27 1177
[24]Luo X R, Zhang B and Li Z J 2007 Solid-State Electron. 51 493
[1] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[2] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[3] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[4] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[5] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[6] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[7] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[8] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[9] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[10] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[11] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
[12] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[13] Variable-K double trenches SOI LDMOS with high-concentration P-pillar
Lijuan Wu(吴丽娟), Lin Zhu(朱琳), Xing Chen(陈星). Chin. Phys. B, 2020, 29(5): 057701.
[14] Numerical and analytical investigations for the SOI LDMOS with alternated high-k dielectric and step doped silicon pillars
Jia-Fei Yao(姚佳飞), Yu-Feng Guo(郭宇锋), Zhen-Yu Zhang(张振宇), Ke-Meng Yang(杨可萌), Mao-Lin Zhang(张茂林), Tian Xia(夏天). Chin. Phys. B, 2020, 29(3): 038503.
[15] Breakdown voltage enhancement in GaN channel and AlGaN channel HEMTs using large gate metal height
Zhong-Xu Wang(王中旭), Lin Du(杜林), Jun-Wei Liu(刘俊伟), Ying Wang(王颖), Yun Jiang(江芸), Si-Wei Ji(季思蔚), Shi-Wei Dong(董士伟), Wei-Wei Chen(陈伟伟), Xiao-Hong Tan(谭骁洪), Jin-Long Li(李金龙), Xiao-Jun Li(李小军), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(2): 027301.
No Suggested Reading articles found!