Abstract Gate-modulated generation–recombination (GMGR) current IGMGR induced by the interface traps in an n-type metal–oxide–semiconductor field-effect transistor (nMOSFET) is investigated. The generation current is found to expand rightwards with increasing the reversed drain PN junction bias, and the recombination current is enhanced as the forward drain bias increases. The variations of IGMGR curves are ascribed to the changes of the electron density and hole density at the interface, NS and PS, under the different drain bias voltages. Based on an analysis of the physical mechanism, the IGMGR model is set up by introducing two coefficients (m and t). The coefficients m and t can modulate the curves widths and peak values. The simulated results under reverse mode and forward mode are obviously in agreement with the experimental results. This proves that this model can be applicable for generation current and recombination current and that the theory behind the model is reasonable. The details of the relevant mechanism are given in the paper.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61306131) and the Research Project of Education Department of Shaanxi Province, China (Grant No. 2013JK1095).
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.