Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 110702    DOI: 10.1088/1674-1056/23/11/110702
GENERAL Prev   Next  

Spectral analysis of the UFBG-based acousto–optical modulatorin V-I transmission matrix formalism

Wu Liang-Ying (吴良英), Pei Li (裴丽), Liu Chao (刘超), Wang Yi-Qun (王一群), Weng Si-Jun (翁思俊), Wang Jian-Shuai (王建帅)
Key Laboratory of All Optical Network & Advanced Telecommunication Network of EMC, Beijing Jiaotong Univcnersity, Beijing 100044, China
Abstract  In this study, the V-I transmission matrix formalism (V-I method) is proposed to analyze the spectrum characteristics of the uniform fiber Bragg grating (FBG)-based acousto-optic modulators (UFBG-AOM). The simulation results demonstrate that both the amplitude of the acoustically induced strain and the frequency of the acoustic wave (AW) have an effect on the spectrum. Additionally, the wavelength spacing between the primary reflectivity peak and the secondary reflectivity peak is proportional to the acoustic frequency with the ratio 0.1425 nm/MHz. Meanwhile, we compare the amount of calculation. For the FBG whose period is M, the calculation of the V-I method is 4×(2M-1) in addition/subtraction, 8×(2M-1) in multiply/division and 2M in exponent arithmetic, which is almost a quarter of the multi-film method and transfer matrix (TM) method. The detailed analysis indicates that, compared with the conventional multi-film method and transfer matrix (TM) method, the V-I method is faster and less complex.
Keywords:  uniform fiber bragg grating (UFBG)      acousto-optic modulator (AOM)      V-I transmission matrix formalism      spectrum  
Received:  05 April 2014      Revised:  22 May 2014      Accepted manuscript online: 
PACS:  07.60.-j (Optical instruments and equipment)  
  07.60.Vg (Fiber-optic instruments)  
  42.81.Wg (Other fiber-optical devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61275076).
Corresponding Authors:  Pei Li     E-mail:  lipei@bjtu.edu.cn

Cite this article: 

Wu Liang-Ying (吴良英), Pei Li (裴丽), Liu Chao (刘超), Wang Yi-Qun (王一群), Weng Si-Jun (翁思俊), Wang Jian-Shuai (王建帅) Spectral analysis of the UFBG-based acousto–optical modulatorin V-I transmission matrix formalism 2014 Chin. Phys. B 23 110702

[1] Dong X W and Liu W K 2013 Chin. Phys. B 22 024210
[2] Feng T, Yan F P, Li Q, Peng W J, Feng S C, Tan S Y and Wen X D 2013 Chin. Phys. B 22 014208
[3] Guo J C, Zuo Y H, Zhang Y, Ding W C, Cheng B W, Yu J Z and Wang Q M 2009 Chin. Phys. B 22 18 2223
[4] Sun L Q, Dong B, Wang Y X, Evan L and Wang A B 2008 Chin. Phys. Lett. 25 3593
[5] Diez A, Delgado-Pinar M, Mora J, Cruz J L and Andres M V 2003 IEEE Photon. Technol. Lett. 15 84
[6] Russo N A, Duchowicz R, Mora J, Cruz J L and Andres M V 2002 Opt. Commun. 210 361
[7] Fu M Y, Liu W F, Chen T C and Sheng H J 2003 IEEE Photon. Technol. Lett. 15 1392
[8] Liu W F, Russell P S J and Dong L 1997 Opt. Lett. 22 1515
[9] Silva R E, Franco M A, Neves P T, Bartelt H and Pohl A A 2013 Opt. Express 21 6997
[10] Guan B O, Yu Y L, Ge C F and Dong X Y 2000 Acta Opt. Sin. 20 34 (in Chinese)
[11] Born M and Wolf E 1975 Principles of Optics (Beijing: Publishing House Of Electronics Industry) p. 422 (in Chinese)
[12] Zhang Z J 2009 Optic Fiber Grating Theoretical Basis and Sensing Technology (Beijing: Science Press) p. 100 (in Chinese)
[13] Zeng X K and Rao Y J 2010 Acta Phys. Sin. 59 8597 (in Chinese)
[14] Li Z X, Pei L, Liu C, Ning T G and Yu S W 2012 Appl. Opt. 51 7314
[15] Liu C, Pei L, Li Z X, Ning T G, Yu S W and Kang Z X 2013 Appl. Opt. 52 3318
[16] Liu C, Pei L, Li Z X, Ning T G, Gao S, Kang Z X and Sun J 2013 Acta Phys. Sin. 62 034208 (in Chinese)
[17] Oliveira R A, Neves P T, Pereira J T and Pohl A A A 2008 Opt. Commun. 281 4899
[18] Capmany J, Muriel M A and Sales S 2003 J. Lightwave Technol. 21 3125
[19] Li Z X, Li P, Qi C H, Peng W J, Ning T G, Zhao R F and Gao S 2010 Acta Phys. Sin. 59 8616 (in Chinese)
[20] Delgado-Pinar D Z M, Diez A, Perez-Millan P and Andres M V 2006 Opt. Express 14 1106
[21] Russell P S L and Liu W F 2000 J. Opt. Soc. Am. A 17 1421
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[3] Investigation of spatial structure and sympathetic cooling in the 9Be+40Ca+ bi-component Coulomb crystals
Min Li(李敏), Yong Zhang(张勇), Qian-Yu Zhang(张乾煜), Wen-Li Bai(白文丽), Sheng-Guo He(何胜国), Wen-Cui Peng(彭文翠), and Xin Tong(童昕). Chin. Phys. B, 2023, 32(3): 036402.
[4] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[5] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[6] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[7] Synchronous detection of multiple optical characteristics of atmospheric aerosol by coupled photoacoustic cavity
Hua-Wei Jin(靳华伟), Ren-Zhi Hu(胡仁志), Pin-Hua Xie(谢品华), and Ping Luo(罗平). Chin. Phys. B, 2022, 31(6): 060703.
[8] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[9] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[10] Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
[11] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[12] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[13] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[14] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[15] Distributed analysis of forward stimulated Brillouin scattering for acoustic impedance sensing by extraction of a 2nd-order local spectrum
Yu-Lian Yang(杨玉莲), Jia-Bing Lin(林佳兵), Li-Ming Liu(刘黎明), Xin-Hong Jia(贾新鸿), Wen-Yan Liang(梁文燕), Shi-Rong Xu(许世蓉), and Li Jiang(姜利). Chin. Phys. B, 2021, 30(8): 084205.
No Suggested Reading articles found!