Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 110701    DOI: 10.1088/1674-1056/23/11/110701
GENERAL Prev   Next  

A pressure calibration method for a portable wide-access “panoramic” cell

Fang Lei-Ming (房雷鸣), Wang Yun (王云), Chen Xi-Ping (陈喜平), Sun Guang-Ai (孙光爱), Chen Bo (陈波), Peng Shu-Ming (彭述明)
Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  A simple and convenient pressure calibration method is developed for a newly designed portable wide-access ‘panoramic’cell. This cell is adapted to angle-dispersive-mode high-pressure in situ neutron diffraction of reactor neutron sources. This pressure calibration method has established a relationship between the cell pressure and the anvil displacement (gasket compression) based on the fixed-point calibration technique. By employing TiZr gasket with a thickness of 3 mm and WC anvil with a culet of 4 mm diameter, the average anvil displacements are 1.31 mm and 2.22 mm for Bi phase transitions (2.55 GPa and 7.7 GPa), and 1.85 mm for Ba phase transitions (5.5 GPa), respectively. In this pressure range, the pressure increases quickly with decreasing gasket thickness, and undergoes a linear increase with the anvil displacement. By extrapolating the calibration curve, the cell pressure will achieve 10 GPa when the anvil displacement is around 2.5 mm.
Keywords:  pressure calibration      neutron diffraction      phase transition  
Received:  09 April 2014      Revised:  20 May 2014      Accepted manuscript online: 
PACS:  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  47.80.Fg (Pressure and temperature measurements)  
  61.05.F- (Neutron diffraction and scattering)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91126001, 11105128, and 51231002).
Corresponding Authors:  Fang Lei-Ming     E-mail:  flmyaya2008@163.com

Cite this article: 

Fang Lei-Ming (房雷鸣), Wang Yun (王云), Chen Xi-Ping (陈喜平), Sun Guang-Ai (孙光爱), Chen Bo (陈波), Peng Shu-Ming (彭述明) A pressure calibration method for a portable wide-access “panoramic” cell 2014 Chin. Phys. B 23 110701

[1] Besson J M, Nelmes R J, Hamel G, Loveday J S, Weill G and Hull S 1992 Physica B 180 907
[2] Klotz S, Besson J M, Hamel G, R J Nelmes, Loveday J S, Marshall W G and Wilson R M 1995 Appl. Phys. Lett. 66 1735
[3] Klotz S, Strässle Th, Rousse G, Hamel G and Pomjakushin V 2005 Appl. Phys. Lett. 86 031917
[4] Xu J and Mao H K 2000 Science 290 783
[5] Xu J, Mao H K, Hemley R J and Hines E 2004 Rev. Sci. Instr. 75 1034
[6] Hui B, He D, Lu Y, Chen X, Zhang Y, Sun G and Chen B 2013 Chin. J. High Press. Phys. 27 517 (in Chinese)
[7] Fan D W, Wei S Y and Xie H S 2013 Chin. Phys. B 22 010702
[8] Jing Q M, Wu Q, Liu L, Bi Y, Zhang Y, Liu S G and Xu J A 2012 Chin. Phys. B 21 106201
[9] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[10] Liu L, Bi Y and Xu J A 2013 Chin. Phys. B 22 056201
[11] Bridgman P W 1952 Proc. Am. Acad. Arts Sci. 81 165
[12] Decker D L, Bassett W A, Merrill L, Hall H T and Barnett J D 1972 J. Phys. Chem. Ref. Data 1 773
[13] Timofeev Y A and Utyuzh A N 2003 Instr. Exp. Tech. 46 721
[14] Dunstan D J 1989 Rev. Sci. Instrum. 60 3789
[15] Johansen P G 1989 Simple Molecular System at Very High Density (New York: Eds., Plenum.) p. 299
[16] Evans J S O, Hu Z, Jorgensen J D, Argyriou D N, Short S and Sleight A W 1997 Science 275 61
[17] Perottoni C A and da Jornada J A H 1998 Science 280 886
[18] Bean V E, Akimoto S, Bell P M, Block S, Holzapfel W B, Manghnani M H, Nicol M F and Stishov S M 1986 Physica B 139 52
[19] Fang L, He D, Chen C, Ding L and Luo X 2007 High Press. Res. 27 367
[20] Bonetti M and Calmettes P 2005 Rev. Sci. Instrum. 76 043903
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[8] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[9] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[10] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[11] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[12] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[13] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[14] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!