Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 110703    DOI: 10.1088/1674-1056/23/11/110703
GENERAL Prev   Next  

Digital coherent detection research on Brillouin optical time domain reflectometry with simplex pulse codes

Hao Yun-Qi (郝蕴琦)a, Ye Qing (叶青)b, Pan Zheng-Qing (潘政清)b, Cai Hai-Wen (蔡海文)b c, Qu Rong-Hui (瞿荣辉)b
a College of Physics and Electronics Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China;
b Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
c Shanghai Synet Optics Technology Corporation, Shanghai 201203, China.
Abstract  The digital coherent detection technique has been investigated without any frequency-scanning device in the Brillouin optical time domain reflectometry (BOTDR), where the simplex pulse codes are applied in the sensing system. The time domain signal of every code sequence is collected by the data acquisition card (DAQ). A shift-averaging technique is applied in the frequency domain for the reason that the local oscillator (LO) in the coherent detection is fix-frequency deviated from the primary source. With the 31-bit simplex code, the signal-to-noise ratio (SNR) has 3.5-dB enhancement with the same single pulse traces, accordant with the theoretical analysis. The frequency fluctuation for simplex codes is 14.01 MHz less than that for a single pulse as to 4-m spatial resolution. The results are believed to be beneficial for the BOTDR performance improvement.
Keywords:  Brillouin optical time domain reflectometry      digital coherent detection      simplex pulse codes      signal-to-noise ratio  
Received:  22 March 2014      Revised:  26 May 2014      Accepted manuscript online: 
PACS:  07.60.Vg (Fiber-optic instruments)  
  07.05.Hd (Data acquisition: hardware and software)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2012AA041203), the National Natural Science Foundation of China (Grant Nos. 61377062 and 31201377), the Program of Shanghai Excellent Technical Leaders, China (Grant No. 13XD1425400), and the Doctorial Fund of Zhengzhou University of Light Industry, China (Grant No. 2013BSJJ012).
Corresponding Authors:  Hao Yun-Qi, Ye Qing     E-mail:  haoyunhaoqi@126.com;yeqing@siom.ac.cn

Cite this article: 

Hao Yun-Qi (郝蕴琦), Ye Qing (叶青), Pan Zheng-Qing (潘政清), Cai Hai-Wen (蔡海文), Qu Rong-Hui (瞿荣辉) Digital coherent detection research on Brillouin optical time domain reflectometry with simplex pulse codes 2014 Chin. Phys. B 23 110703

[1] Kurashi T, Horiguchi T, Izumita H, Furukawa S and Koyamada Y 1992 Int. Quantum Electron. Conf., Vienna Austria MoL4 42
[2] Horiguchi T, Kurashima T and Tateda M 1990 Appl. Opt. 29 2219
[3] Hao Y Q, Ye Q, Pan Z Q, Cai H W and Qu R H 2013 Chin. Phys. B 22 074214
[4] Horiguchi T, Shimizu K, Kurashima T, Tateda M and Koyamada Y 1995 J. Lightw. Technol. 13 1296
[5] Soto M A, Bolognini G and Pasquale F D 2008 Opt. Express 16 19097
[6] Alahbabi M N, Cho Y T and Newson T P 2005 J. Opt. Soc. Am. B 22 1321
[7] Moshe N, Newton S A, Giffard R P, Moberly D S, Sischka F, Trutna J R W R and Foster S 1989 J. Lightw. Technol. 7 24
[8] Lu Y G, Liang H, Zhang X P and Wang F 2010 9th International Conference on Optical Communications and Networks (ICOCN 2010) Nanjing, p. 36
[9] Michael D J 1993 IEEE Photon. Technol. Lett. 5 822
[10] Lee D, Yoon H, Kim P, Park J, Kim N Y and Park N 2005 IEEE Photon. Technol. Lett. 17 163
[11] Soto M A, Bolognini G and Pasquale F D 2008 Opt. Express 16 19097
[12] Soto M A, Bolognini G, Pasquale F D and Thévenaz L 2010 Opt. Lett. 35 259
[13] Zhang X, Liu D and Song M 2005 Opt. Commun. 254 168
[14] Jia X H, Rao Y J, Deng K, Yang Z X, Chang L, Zhang C and Ran Z L 2011 IEEE Photon. Technol. Lett. 23 435
[15] Marcelo A S, Gabriele B and Di Pasquale F 2009 IEEE Photon. Technol. Lett. 21 450
[16] Lee D 2004 Proc. IEEE LTIMC (New York) p. 118
[17] Yang F, Ye Q, Pan Z, Chen D, Cai H, Qu R, Yang Z and Zhang Q 2012 Opt. Commun. 285 149
[18] HaoY, Ye Q, Pan Z, Yang F, Cai H and Qu R 2012 IEEE Photonics J. 4 1686
[19] Horiguchi T, Shimizu K, Kurashima T, Tateda M and Koyamada Y 1995 J. Lightw. Technol. 13 1296
[1] Signal-to-noise ratio of Raman signal measured by multichannel detectors
Xue-Lu Liu(刘雪璐), Yu-Chen Leng(冷宇辰), Miao-Ling Lin(林妙玲), Xin Cong(从鑫), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2021, 30(9): 097807.
[2] Blind parameter estimation of pseudo-random binary code-linear frequency modulation signal based on Duffing oscillator at low SNR
Ke Wang(王珂), Xiaopeng Yan(闫晓鹏), Ze Li(李泽), Xinhong Hao(郝新红), and Honghai Yu(于洪海). Chin. Phys. B, 2021, 30(5): 050708.
[3] Novel Woods-Saxon stochastic resonance system for weak signal detection
Yong-Hui Zhou(周永辉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2020, 29(4): 040503.
[4] Noise properties of multi-combination information in x-ray grating-based phase-contrast imaging
Wali Faiz, Ji Li(李冀), Kun Gao(高昆), Zhao Wu(吴朝), Yao-Hu Lei(雷耀虎), Jian-Heng Huang(黄建衡), Pei-Ping Zhu(朱佩平). Chin. Phys. B, 2020, 29(1): 014301.
[5] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[6] Implication of two-coupled tri-stable stochastic resonance in weak signal detection
Quan-Quan Li(李泉泉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2018, 27(3): 034203.
[7] Noise analysis of grating-based x-ray differential phase-contrast imaging with angular signal radiography
Wali Faiz, Yuan Bao(鲍园), Kun Gao(高昆), Zhao Wu(吴朝), Chen-Xi Wei(卫晨希), Gui-Bin Zan(昝贵彬), Pei-Ping Zhu(朱佩平), Yang-Chao Tian(田扬超). Chin. Phys. B, 2017, 26(4): 040602.
[8] Enhancement of signal-to-noise ratio of ultracold polar NaCs molecular spectra by phase locking detection
Wenhao Wang(王文浩), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Xiaofeng Wang(王晓锋), Yanyan Liu(刘艳艳), Jie Ma(马杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2017, 26(12): 123701.
[9] Signal-to-noise ratio comparison of angular signal radiography and phase stepping method
Wali Faiz, Peiping Zhu(朱佩平), Renfang Hu(胡仁芳), Kun Gao(高昆), Zhao Wu(吴朝), Yuan Bao(鲍园), Yangchao Tian(田扬超). Chin. Phys. B, 2017, 26(12): 120601.
[10] Stochastic resonance in an over-damped linear oscillator
Lin Li-Feng (林丽烽), Tian Yan (田艳), Ma Hong (马洪). Chin. Phys. B, 2014, 23(8): 080503.
[11] Theory of noise in a kilo-Hz cascaded high-energy Yb-doped nanosecond pulsed fiber amplifier
Liu Ming (刘明), Zhang Hai-Tao (张海涛), Gong Ma-Li (巩马理), Zhao Yue-Jin (赵跃进), Cheng Wen-Yong (程文雍), Meng Kuo (孟阔), Zheng Chao (郑超), Chen Yi-Zhu (陈倚竹). Chin. Phys. B, 2014, 23(4): 044214.
[12] Stochastic resonance for a metapopulation system driven by multiplicative and additive colored noises
Wang Kang-Kang (王康康), Liu Xian-Bin (刘先斌). Chin. Phys. B, 2014, 23(1): 010502.
[13] Single-photon modulation spectrum
Liu Yan (刘岩), Yu Bo (于波), He Bo (何博), Zhang Guo-Feng (张国峰), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2014, 23(1): 010101.
[14] Influence of laser linewidth on performance of Brillouin optical time domain reflectometry
Hao Yun-Qi (郝蕴琦), Ye Qing (叶青), Pan Zheng-Qing (潘政清), Cai Hai-Wen (蔡海文), Qu Rong-Hui (瞿荣辉). Chin. Phys. B, 2013, 22(7): 074214.
[15] A modified phase diversity wavefront sensor with a diffraction grating
Luo Qun (罗群), Huang Lin-Hai (黄林海), Gu Nai-Ting (顾乃庭), Rao Chang-Hui (饶长辉). Chin. Phys. B, 2012, 21(9): 094201.
No Suggested Reading articles found!