CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Low-resistance Ohmic contact on polarization-dopedAlGaN/GaN heterojunction |
Li Shi-Bin (李世彬)a, Yu Hong-Ping (余宏萍)a, Zhang Ting (张婷)a, Chen Zhi (陈志)a b, Wu Zhi-Ming (吴志明)a |
a State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China; b Department of Electrical & Computer Engineering, University of Kentucky, Lexington, KY 40506, USA |
|
|
Abstract High electronic density is achieved by polarization doping without an impurity dopant in graded AlGaN films. Low specific contact resistance is studied on the polarization-doped AlGaN/GaN heterojunctions by using the transmission line method (TLM). The sheet density of polarization-doped AlGaN/GaN heterojunction is 6×1014 cm -2 at room temperature. The linearly graded material structure is demonstrated by X-ray diffraction. The carrier concentration and mobility are characterized by a temperature-dependent Hall measurement. Multiple-layer metal (Ti/Al/Ti/Au) is deposited and annealed at 650℃ to realize the Ohmic contacts on the graded AlGaN/GaN heterojunctions.
|
Received: 13 March 2014
Revised: 22 April 2014
Accepted manuscript online:
|
PACS:
|
71.10.Ca
|
(Electron gas, Fermi gas)
|
|
71.15.-m
|
(Methods of electronic structure calculations)
|
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
77.22.Ej
|
(Polarization and depolarization)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61204098 and 61371046). |
Corresponding Authors:
Li Shi-Bin
E-mail: shibinli@uestc.edu.cn
|
About author: 71.10.Ca; 71.15.-m; 73.40.Kp; 77.22.Ej |
Cite this article:
Li Shi-Bin (李世彬), Yu Hong-Ping (余宏萍), Zhang Ting (张婷), Chen Zhi (陈志), Wu Zhi-Ming (吴志明) Low-resistance Ohmic contact on polarization-dopedAlGaN/GaN heterojunction 2014 Chin. Phys. B 23 107101
|
|
| [1] | Han D P, Shim J I and Shin D S 2010 Electron. Lett. 46 437
|
|
| [2] | Chikhaoui W, Bluet J M, Poisson M A, Sarazin N, Dua C and Bru-Chevallier C 2010 Appl. Phys. Lett. 96 072107
|
|
| [3] | De Cuir E A, Fred E, Passmore B S, Muddasani A, Manasreh M O, Xie J, Morkoc H, Ware M E and Salamo G J 2006 Appl. Phys. Lett. 89 151112
|
|
| [4] | Jena D, Heikman S, Green D, Buttari D, Coffie R, Xing H, Keller S, Den Baars S, Speck J S, Mishra U K and Smorchkova I 2002 Appl. Phys. Lett. 81 4395
|
|
| [5] | Park S H and Chuang S L 2000 Appl. Phys. Lett. 76 1981
|
|
| [6] | Cho K H, Choi Y H, Lim J and Han M K 2009 IEEE Trans. Electron. Dev. 56 365
|
|
| [7] | Gangwani P, Pandey S, Haldar S, Gupta M and Gupta R S 2007 Solid-State Electron. 51 130
|
|
| [8] | Cho K H, Kima Y S, Lima J, Choia Y H and Han M K 2010 Solid-State Electron. 54 405
|
|
| [9] | Hasegawa H and Akazawa M 2009 J. Vac. Sci. Technol. B 27 2048
|
|
| [10] | Witte H, Charpentier M, Warnke C, Mueller M, Guenther K, Dadgar A and Krost A 2010 Phys. Status Solidi 7 464
|
|
| [11] | Smorchkova I P, Elsass C R, Ibbetson J P, Vetury R, Heying B, Fini P, Haus E, DenBaars S P, Speck J S and Mishra U K 1999 J. Appl. Phys. 86 4520
|
|
| [12] | Rajan S, DenBaars S P, Mishra U K, Xing H and Jena D 2006 Appl. Phys. Lett. 88 042103
|
|
| [13] | Simon J, Protasenko V, Lian C, Xing H and Jena D 2010 Science 327 60
|
|
| [14] | Wei Q, Wu Z, Sun K, Ponce F A, Hertkorn J and Scholz F 2009 Appl. Phys. Express 2 121001
|
|
| [15] | Carnevale S D, Kent T F, Phillips P J, Mills M J, Rajan S and Myers R C 2012 Nano. Lett. 12 915
|
|
| [16] | Simon J D
|
|
| [17] | Karrer U, Ambacher O and Stutzmann M 2000 Appl. Phys. Lett. 77 2012
|
|
| [18] | Fang Z Q, Look D C, Visconti P, Wang D F, Lu C Z, Yun F, Morkoc H, Park S S and Lee K Y 2001 Appl. Phys. Lett. 78 2178
|
|
| [19] | Kwak J S, Lee K Y, Han J Y, Cho J, Chae S, Nam O H and Park Y 2001 Appl. Phys. Lett. 79 3254
|
|
| [20] | Jang T, Lee S N, Nam O H and Park Y 2006 Appl. Phys. Lett. 88 193505
|
|
| [21] | Lee C T, Lin Y J and Lin C H 2002 J. Appl. Phys. 92 3825
|
|
| [22] | Song J O, Kim S H, Kwak J S and Seong T Y 2003 Appl. Phys. Lett. 83 1154
|
|
| [23] | Gregory Snider. 1-D Poisson.
|
|
| [24] | Li S, Ware M E, Wu J, Kunets V P, Hawkridge M, Minor P, Wang Z, Wu Z, Jiang Y and Salamo G J 2012 J. Appl. Phys. 112 053711
|
|
| [25] | Li S, Xiao Z F, Su Y J, Jiang J, Ju Y F, Wu Z M and Jiang Y D 2012 Acta Phys. Sin. 61 163701 (in Chinese)
|
|
| [26] | Gao B Z, Gong N and Yu F Q 2008 Chin. Phys. B 17 290
|
|
| [27] | Li S, Ware M, Wu J, Minor P, Wang Z, Wu Z, Jiang Y and Salamo G 2012 Appl. Phys. Lett. 101 122103
|
|
| [28] | Jena D, Heikman S, Speck J S, Gossard A and Mishra U K 2003 Phys. Rev. B 67 153306
|
|
| [29] | Motayed A, Bathe R, Wood M C, Douf O S, Vispute R D and Mohammad S N 2003 J. Appl. Phys. 93 1087
|
|
| [30] | Jeon J W, Seong T Y, Kim H and Kim K K 2009 Appl. Phys. Lett. 94 042102
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|